Power Architecture® 32-bit Application
Binary Interface Supplement 1.0 -
Linux®

s

Power

Ryan S. Arnold
IBM

Greg Davis
Green Hills

Brian Deitrich
Freescale Semiconductor

Michael Eager
Eager Consulting

Emil Medve
Freescale Semiconductor

Steven J. Munroe
IBM

Joseph S. Myers
CodeSourcery

Steve Papacharalambous
Freescale Semiconductor

Anmol P. Paralkar
Freescale Semiconductor

Katherine Stewart
Freescale Semiconductor

Edmar Wienskoski
Freescale Semiconductor

Power Architecture® 32-bit Application Binary Interface Supplement 1.0 - Linux®
by Ryan S. Arnold, Greg Davis, Brian Deitrich, Michael Eager, Emil Medve, Steven J. Munroe, Joseph S. Myers,
Steve Papacharalambous, Anmol P. Paralkar, Katherine Stewart, and Edmar Wienskoski

1.0 Edition

Published April 19, 2011

Copyright © 1999, 2003, 2004 IBM Corporation

Copyright © 2002 Freescale Semiconductor, Inc.

Copyright © 2003, 2004 Free Standards Group

Copyright © 2011 Power.org

The ATR-LINUX portions of this document are derived from the 64-bit PowerPC ELF Application Binary Interface
Supplement 1.8, originally written by lan Lance Taylor under contract for IBM, with later revisions by: David
Edelsohn, Torbjorn Granlund, Mark Mendell, Kristin Thomas, Alan Modra, Steve Munroe, and Chris Lorenze.

The ATR-TLS and ATR-SECURE-PLT sections of this document are original contributions of IBM written by Alan
Modra and Steven Munroe.

The ATR-SPE and ATR-EABI portions of this document are derived from material used to write the E500 ABI and
are contributed by Freescale Semiconductor.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3; with
no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is available from

http://www.gnu.org/licenses/fdl-1.3.txt.

The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States and/or other
countries: AIX®, PowerPC®, VMX®, POWER™. A full list of U.S. trademarks owned by IBM may be found at
http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of Freescale Semiconductor in the United States and/or other countries: AltiVec™,
€500™. Information on the list of U.S. trademarks owned by Freescale Semiconductor may be found at
http://www.freescale.com/files/abstract/help_page/TERMSOFUSE.html.

The following terms are trademarks or registered trademarks of Power.org in the United States and/or other countries: Power ISA™, Power

Architecture®. Information on the list of U.S. trademarks owned by Power.org may be found at http://www.power.org/brand_center/home/.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries. Further information on this trademark can be found at

http://www.linuxfoundation.org/programs/legal/trademark.

Revision History
Revision 1.0 April 19, 2011 Revised by: Power.org PowerABI TSC

Table of Contents

Preface ix
1. How To Read This DOCUMENTcoueriiriiriiiiiniieieiciteesieet ettt s ix
2. SECtiON NUIMDEIING ...couveiiriiiiiiiieiireetest ettt sttt sttt sttt st e b esb et e sbeeseenbesbeenenbeean X

1. Introduction 1
1.1. Reference DOCUMENTATIONcccertriiriirieiinieeiene ettt ettt st be st et saeeaeenaesaeesnenieees 1

2. Software Installation 3
2.1. Physical Distribution Media and FOrmats..........coceeriirieriiiinienienieeeesteeee et 3

3. Low Level System Information 4
3.1, Machine INtEIfaCe.covueiiiiiriiiiieiieeeeee ettt sttt ae e s e et eaee e 4

3.1.1. ProcesSOr ATCHILECTUTE.eeutetieriiieieeieerite ettt ettt ettt sttt et e sbeesaeesaees 4
3.1.2. Data RePreSEentation.cccouiiieiiiiirieiieiieiiete ettt st 4
3.1.2. 1. BYte OTAETING......eiiiiiiiiiiiieeieeeite ettt ettt ettt et sbee st ae e 4

3.1.2.2. Fundamental TYPEScccueevueeriiniiiiieieenie ettt 7

3.1.2.3. Aggregates and UNIONScocuerueeieriirienienieeiesieeiteieeece e see e ie et te e eeseeeneas 11

3124, BIt-fIEIAS .ttt 14

3.2. Function Calling SEQUENICEc..ccueiruiriirieieieieiinene ettt ettt s st eveenes 19
321 REZISTETS .ttt ettt ettt ettt et e bt s h et bt eat et e ae e bt sae e st e b e eb e et e ebeeneesbeenean 19
3.2.1.1. Re@iSter ROIEScoiuiiuiiiiiiieieiieee et 20

3.2.1.2. Limited-AcCCeSS BilS.....ccceoiiiiriiiiiiiiieieiteeee e 25

3.2.2. The Stack Frame......cc.coceeiiiiiiiiiieieieeteeeee ettt sttt s 29
3.2.2.1. General Stack Frame Requirements...........cccccoeevenieneenenennieneneenenceeeneenen 30

3.2.2.2. Optional SAVE ATEAS.....cc.erueriiriiriieiirieentenieetenieeitetestee ettt st et sbeeee e enees 31

3.2.3. Parameter Passing.......c..cocoviriiieriiiiiniieienieeteresteet ettt 38
3.2.3.1. Parameter Passing Register Selection Algorithmc.ccecevervevincnnenenne. 40

3.2.3.2. Parameter Passing EXamplescccecierirriieriienienieeiecieeseeeee e 45

3.2.4. Variable ArgUmENt LiStS.......cceerieriieriieeiiienienieeieesiee e ete et e setestesbeeeeesaeesaneensaenaeenas 50
3.2.5. REUIN VALULS. ...c.eeiiiiiiiiiiniceieceitcteetcete ettt et sttt sbe e s 51

3.3, COodING EXAMPIES ...eeeuviiiieiieeieeiieiterte ettt sttt ettt e bt e bt e setesabeeabeesbbessbesaseebaesssesnsean 53
3.3.2. Code MOl OVETVIBW.......coueriiriiriieiiniietinieeitente sttt eaeete st essenbesenetesbeeneesaeennes 53
3.3.3. Function Prologue and EpilOgUEccceeviiiriiiiiiiniiiieeieeteteete et 54
3.3.3.1. The Purpose of a Function’s Prologue...........ccccceveeriiriiinieenienienieeneenieeeenn 54

3.3.3.2. The Purpose of a Function’s Epilogue...........cccceeveiriiniiiniiienienienieenieenieeen 54

3.3.3.3. Rules for Prologue and Epilogue SEqUENCESccovvereirieenienierieenieeneenaeenn 54

3.3.4. Register Saving and Restoring FUNCHONS..........cocueeviiiniiriiiiiieienieceeieeee e 55
3.3.4.1. Details about the FUNCHONS...........coceiiiiiriiiiieieiieteecceetee et 57

3.3.4.2. Register Saving and Restoring Functions (VEctor)c..cccceeevveciineeccnennne. 63

335 PrOfIIING vt e e 65
3.3.6. Data ODBJECLSouviiiiiiiiiiiieieeieeeetee ettt sttt et e e s 65
3.3.7. FUNCHON CalIS...ccuiiiiiiiiiiiieeieeieesite ettt ettt et st b et st e b enaee e 68
3.3.8. BranChingc.oouiiiiiiiiiiii e e 69
3.3.9. Dynamic Stack Space ALIOCAtIONccceerueruirenierieieiirininteretetene ettt seeeeeee e saeas 71

3.4, DWARF DEfINIION.eeitiitieiiiiietieie ettt ettt ettt et et sb et et e esbeese et e ebeeneesaeenean 72
3.5. EXCeption Handling.......cccoouiiiiiieieieeeee ettt sttt 73

iii

4. Object Files 74

4.3 ELF HEACT ...ttt et sttt et st s n b enne 74
44, SPECIAL SECLIONS ...veuviintieiieeiieeitestte st et ertte st e sate e bt esttesateebeebtesbtesabeesstesbeesabeeseenbeesaseeseenseesas 74
4.6, SYMDOL TADIE ...coniiiiiiiieiieee ettt ettt sht e st e bt e sbe e st e bt e sbeesateebeenbee e 76
4.6.1. SYMDBOL VALUEScuveiiiiiiiiieeieeitte ettt ettt ettt et et st esbe e bt e saee s 76

4.7, SMAIL DAA ATCA ...eeeueiiiieiiieieeit ettt ettt ettt e sbt e s bt e bt e s bt s be e bt e sbeesabeebeenbee e 77
4.7.1. Use of the Small Data Area in Executables...........ccoceevieriiiiniiniiiniinniinicniceeceeen 78
4.7.2. Use of the Small Data Area in Shared Objects.........c..cocceverieiiniinieninieeneecicee 78

4.9. DWARFE AdGQItIONSeeueeiieieitieiieieetee ettt ettt e eesae st en e s bt ese et e eneensesseentesseeneenseeseenes 79
4.10. APU Information SECHIOM.covtiriiriiiriienierie ettt ettt ettt st e bt st saeesbee e 79
4.13. RElOCAION THPES ..enienieieieieitieiiete ettt ettt ettt ettt et e sae st e e s be e s et e eseeneesaeeneesbeeneenseeseenes 81
4.13.1. Relocation FIeldscc.ceouiiuieiiiieieieeeese ettt 82
4.13.2. SPE Specific Relocation Fieldsc.ccooiiieiiiniiiiiniiieeeeeeee e 83
4.13.4. Relocation NOTATIONSc..eeueeterueeierieetietenteetesteeteste bt ete st eseentesseentesbeestesbeeseeneesneenes 84
4.13.5. Relocation TYPes Table.cccueririiriiieieiietee ettt 85
4.13.6. Relocation DeSCriPtions..........ceveeierieruierientieienie ettt ettt see et eee e enes 89

4.15. Thread Local Storage ABIL.........co.ioiiiiiiieee ettt st 91
4.15.1. TLS BaCKGIOUNAcvveiiiiiiiieiiiieetetest ettt et 92
4.15.2. TLS Runtime Handlingccceceeveeririiiininienieeeee ettt 92
4.15.3. TLS AcCCeSS MOEIS....c..eouiiiiiiiiiieiieieiitetet ettt sttt 94
4.15.3.1. General Dynamic TLS Model.........cccccoceeviiniriinininiininienicceeneeeeeeeeenee 94

4.15.3.2. Local Dynamic TLS Modelccoecieriirniienienieeieeitenie et eae e 94

4.15.3.3. Initial EXec TLS MOdElcc.cocveriiriiiiniiienienieieneetcceeee e 95

4.15.3.4. Local Exec TLS MoOdel......cc.cociiriimiiniiniiiininietenieeicceeene e 96

4.15.4. TLS Link Editor OptimiZationsS.......cc.eerueerverrieeniierieeieerieesressesreesseessesseesseeseesses 96
4.15.4.1. General Dynamic to Initial EXEC.......cccuerviieniiniiiiieiiinie et 97

4.15.4.2. General Dynamic to Local EXECccocuviviiiniiniiiiiiiiiiceiceccee e 97

4.15.4.3. Local Dynamic to Local EXEC.......ccocueviiiiiiniiniiiieeieeciceiceceee e 98

4.15.4.4. Initial Exec to Local EXEC.....ccccouiriiviiniiiiniiiicicnicceeec e 99

4.15.5. ELF TLS DEfINItIONSeouvetiriiiiiniieienierteienieetete ettt ene st eetesnesaeenaesaeennens 100

5. Program Loading and Dynamic Linking 105
5.1, Program Loading........c..cocveiiiriiiiniiieiieicieeeeeest ettt st s e 105
5.1.1. Addressing MOMEIS.........oouiiieiieniiiiiiieieeeeeere ettt et 108

5.2. Dynamic LINKINGcc.ooiiiiiiiiiiiiiieeeee ettt st s e 108
5.2.1. Program INEIPIELErcciiiiiiiiiiiiiiieieie ettt e s 108
5.2.2. DYNAMIC SECLIOM ...euveruiiiiiieiierieeniteeite ettt e stte sttt e bt esbtesbe e bt esbeesaresbeesbeesanesaseeaneas 108
5.2.3. Global Offset TabIe.........ccceeieieriieieeieeere ettt sttt e 109
5.2.3.1. Global Offset Table Under The Secure-PLT ABI.........ccccoeviniininiiniieeee 109

5.2.3.2. Global Offset Table Under The BSS-PLT ABI.......cccccooiiiininiiniiiecieeee 110

5.2.4. FUNCHON AQAIESSESeoueeniiiuieietieiietieterte ettt ettt e e st sbeetesbe et entesaeenaesbeennens 111
5.2.5. Procedure Linkage Tableccoeoiriiiiniiieeieeiceee e 112
5.2.5.1. BSS Procedure Linkage Tableccccecueriirieniineeienenieienieeee e 112

5.2.5.2. Secure Procedure Linkage Table..........cccceeuerieviininienenieienieienicecee e 116

6. Libraries

6.1. Library Requirementsccccccevveeeennne.

6.1.1. C Library Conformance with Generic ABI..........c.cccoociiiiiiiiiiiiniieceeeeeeeeen
6.1.1.1. Malloc Routine Return Pointer Alignment..........c..eecvevciienienieniienneeneennens
6.1.1.2. Library Handling of Limited-access Bits in Registers...........ccccceceeveenineenne.

6.1.2. Save and Restore Routines

6.1.2.1. Save and Restore Routine SUffiXescccoceevirieiininiieiiniiniiiecceeee
6.1.2.2. Save and Restore Routine Templates...........c.cccceveevieniniiiieninicniiccieenene
6.1.3. Types Defined In Standard Headerccccooiiiiiiiiiiiiiiiiiecccecceees

A. Taxonomy

B. Attribute Inclusion and ABI Conformance

B.1. ATR-LINUX Inclusion and CONfOrMANCEccooveeiiieiureeeieiiieeeeeeiieeeeeeeieeeeeeeeneeeeeeeneneas

B.2. ATR-EABI Inclusion and Conformance
C. APUs and Power ISA Categories

120

120
120
120
120
120
120
122
124

127
131

131
132

134

List of

Figures

3-1. Structure Smaller Than @ WOIdcc.cooiiriiiiiiiiie et ettt 11
3-2. Structure With NO Padding........cocoeoueriiiiiniiiiiiieeee ettt 12
3-3. Structure With Internal Paddingcocceverviiniiiiiiiniiiiieeeeeseeteee et 12
3-4. Structure With Internal and Tail Paddingcccceceriiiiiiiniininiiiinicceeeeeeeeeeeeeee e 13
3-5. UNION AIOCATION ...ttt ettt ettt st e et sat et sbe et sae et e b e bt et e sbeenaenaeeneen 13
3-6. Simple Bit-fleld AILOCATIONccvieruieriieiiieieeite ettt ete ettt este st e e beesatesaaessbeesaeessaesaseeseenseenes 15
3-7. Bit-Field Allocation With Boundary AIIGNMENT...........ccoteriieriiiinienienieeieenieseeeieestesee e saeeniee e 16
3-8. Bit-Field Allocation With Storage Unit Sharingcceccveevieriieenienienieeieeneesee et esae e 17
3-9. Bit-Field Allocation In A UNION ...c..coeeciiriiiiinierieieniietet ettt ettt saeeaees 17
3-10. Bit-Field Allocation With Unnamed Bit-Fieldsccccccoveriniiniininiiinineneccceecieceeeneeenen 18
3-11. Stack Frame OrganiZationccceeeeriierieiniienieeieeieesiteste et esbeestesateenbeesitesaeesnbeesseesseesaseesseesseesas 29
3-12. Example Minimum Stack Frame AlIOCAtiON...........cooueeiieriiiriiiiiienienieeitesitesee ettt 31
3-13. General-Purpose and Floating-Point RegiSter Save ATeas.........cccevvverueeniienieniieinieenienie e 31
315, CR SAVE ATCA ..ttt et sttt ettt et et n e e ae e e sae s e b et aeennenaeennen 33
3-16. CR Save Area With Floating-Point Save ATea...........ccccoirieriiiiiieniniiiieeeenecreeeeere e 33
3-17. VRSAVE and Vector ReZISter SAVE ATEAScc.eevieriieieriinieierieeteneeeete e 34
3-18. SPE 64-bit General-Purpose Register Save Area..........ccoceeiiiiiiiniiniciiiniecieceeeeeeeeeeeeeen 36
3-19. Parameter Save Area and Local Variable Space...........ccccooceviiiiiininiiiiiiiiiccececeeeceeeen 37
3-20. Parameter Passing EXAMPIEcccceeviiriiiiiiiiiiiiieieeeeriteeteee ettt ettt st e 45
3-21. Vector Parameter Passing EXaMPIEc.cecveiiriiiiiriieieeeeie ettt 47
3-22. SPE Parameter Passing EXampIe.........ccooeioiiiiiiiiiiieeee et 48
3-23. Decimal Floating-Point Parameter Passing Example..........ccccoevevieinininenicnieniinineneneeeeeennee 49
3-24. Profiling EXAMIPIE.......cccuiiuiiiiiiitieete ettt ettt sttt e a et sttt e et et e b et e eaean 65
3-25. Absolute Load and Store EXamPIecooeiiiiiiiiiiiieieee et 66
3-26. Small Model Position-Independent Load and Store............cccceveerienenienineeneneeieneeeeseee e 67
3-27. Large Model Position-Independent Load and StOre............ccccereiiererieniinienenieienieeeeeeceee e 67
3-28. Direct FUNCHON Calloouiiiiiiiiiiiiiieieie ettt sttt sttt b e st sbeeae e enees 68
3-29. Absolute Indirect FUNCtion Callccociiiiiriiiiiiiniiiiiiieie et 68
3-30. Small Model Position-Independent Indirect Function Call............ccccecveviinienineinininienieneeiencneen 69
3-31. Large Model Position-Independent Indirect Function Call............cccceceeviinieniniennineniinineeicnenee. 69
3-32. Before Dynamic Stack ALIOCAtION.c..ovuiriirieriiieniieiteie ettt ettt 71
3-33. Example code t0 allOCate N DYLES: ..ccueiiiieiiiiieriieeieeitesiteete et enttesteeteebeesieesatesnbeesaeesseesaseeseenseenns 71
3-34. After Dynamic Stack ATIOCAIONcc.eevvieriieriieiieeieeitesite ettt steete et eseeesaaesbeesaeessaeseseeseenseenes 72
4-1. Section Ordering Under the BSS-PLTccccooiiiiiiiiiiiii ettt n 77
4-2. Section Ordering Under the Secure-PLTcccooiiiiiiiiiieeiteteeteeieet ettt s 77
4-4. Thread Pointer Addressable MEemOTY.........cccceviieiieriienieiieeieerite sttt ste st esaesaresbeesbeesasesasees 93
4-5. TS BIOCK DIQGIAIMeouviiiieiiiiiieiiesit ettt ettt sttt ettt st e bt e st e sate st e e baessbesata e baesasesasean 93
4-6. Local Exec TLS MOl SEQUENCEScccueeriieriiriiiiieiiie ettt ettt ettt e siaesatessteenbeesanesase s 96
5-1. File Image to Process Memory Image Mappingcocceeveerierieriieenienieeieeniee e eieeiee e eve e 106
5-2. Loading the Address of _GLOBAL_OFFSET_TABLE_ Under the Secure-PLT ABI.................... 109
5-3. Loading the Address of _GLOBAL_OFFSET_TABLE_ Under the BSS-PLT ABI 110
5-4. Example BSS-PLT .plt Section Implementationcoceerierierrieenienieeieeee e 113
5-5. Example BSS-PLT Entries Post RESOIULIONc..cccocuiiiiiiiiiiiiiinieeececeeeeceeeee e 115
AT TAXOMOMLY ...ttt ettt et e st e b e st eae e e e s st e e eaesaeesnesneeasesneeaeenesaeennens 129

Vi

List of Tables

3-1. Bit and Byte Numbering in HalfWords..........ccccooeiiiiiriiiiiniiieneee et 5
3-2. Bit and Byte NUmbering in WOrdscccoveeriiriiiinienieieneetene ettt ettt 5
3-3. Bit and Byte Numbering in DoubleWordsc..cocueveririiininiiniiiiieneeieeeteeseeeene st 5
3-4. Bit and Byte Numbering in QUAadWOIAScccuerruieriieniienieeieertenie ettt eniee e eaeebeesresbeebeesanesaveennes 5
3-5. FUNAAMENTAL TYPES...utiitiiriieiiiitieiteeie ettt sttt et e st e et e et e sttesabeesbeesbeesabeesbeenbeesasesssesnsaesasennsesnses 7
B0, SPE TP e eutteiteeiieeie ettt ettt ettt et e st e st e et e et e e s tbe et e e bt e abbe e et e e st e e bee s abeenbe et e e sabeeabeenbeenaneeareentes 8
37 VECLOT TYPES weeeutieiieeiieeiterite ettt ettt sit e st e e s ttestte e bt e bt e s abessbeenbeesbaesabeenbeenbeesabeenseenbeesasesaseenbaesasenssesnses 8
3-8. Decimal Floating-Point TYPES.....cccuuerieiiiiiiirieniteiteeite sttt ettt ettt ettt esaesaaeebeesanesasesneas 9
3-9. IBM® AIX® Long DoOUbDIE 128 TYPE ..eeuveeiieriieriiieiieiteriie ettt sttt ettt s te ettt esitesteebeesanesaveenees 9
3-10. Long Double IS DOUDIE TYPEccoveeruieriiieiieiieniieeieette sttt ettt ste sttt e st e satesabeesseesseesaneenseenaeesas 10
311, BIt-FIELA TYPES c.nvveeeieniieiieeite ettt sttt ettt ettt s bt e st s bt e bt e s abesab e e bt e s bt e satesabeesseenseesaseesaeseesas 14
3-12. Bit Numbering for OX0T020304cooiiiieiiieiieeieetestte ettt ettt et sate st e st esbeesateesbeesaee e 15
3-13. REZISTET ROLES...ueiiiiiiiiiiiieeite ettt ettt e b e st e e e b e e s bt e sat e s bt e st e beesateenbeenbeenas 20
3-14. TLS ABI Register Role for General-Purpose Register 2ccccoeeeieciinieninienenenicieneceneeneen 22
3-16. Register Roles for the _Complex float and _Complex double Types..........cccccoveevveniriienieneecenennne. 22
3-17. Register Roles for the _Complex Long Double TYPecccooeeiininiiiiiniieninicieececeeeeeeeeeeen 22
3-18. Secure-PLT Register Role for General-Purpose Register 30cccociviiiiniiiininiininecceenee. 22
3-19. Floating-Point Register Roles for Binary Floating-Point Typescccccoceviniiiininieiiniecneene. 23
3-20. Floating-Point Register Roles for Decimal Floating-Point Types.........ccccceeveeriiirniinieniinienneeneene 23
3-21. Soft-Float General-Purpose Register Roles for Binary Floating-Point Typescccccccvveerenuennee. 24
3-22. Soft-Float General-Purpose Register Roles for Decimal Floating-Point Types........c.cccccoveerenuennee. 24
3-23. Vector REISIEr ROIEScoiiiiiiiieieiieiee ettt et sttt ae et e saeeneas 25
3-24. SPE ReEZISEr ROIES.....c.eiiuiiiiiieiieieteee ettt ettt b et be e e sae s 25
3-25. Parameter Passing Using IBM AIX 128-bit Long Double..........ccccoeeieiiniiniiiiiiieiececeeeeen 45
3-26. Parameter Passing Using IBM AIX 128-bit Long Double and Soft-Float............cccccecveveneenenennee. 46
3-27. Parameter Passing Using long double is double............ccorieriiiiiiiniiniiiinieeneeeeeeeeeeee e 46
3-28. Parameter Passing Using long double is double and Soft-Float............ccceceeviniinininiienincenienenee, 47
3-29. Parameter Passing of Vector Data TYPEScc.eveeueriirieniirieienieetesieeiteie ettt 48
3-30. Parameter Passing of SPE Data TYPEScccccoerierieriiiieiirieiesieeesieetete ettt sttt 48
3-31. Decimal Floating-Point Parameter Passing on Classic Power Architecture (with FPU) 49
3-32. Decimal Floating-Point Parameter Passing with Soft-Float (without FPU)c..cocccoinnnincnne. 50
3-33. SPE Save And ReStore RUIESccooiviiiiiiiiiiiiiiiiccce e 57
3-34. REZISIET IMAPPINEZS .. veeuveeuierureeiiesttenttesteesteesteesteeteeseesseesssessseesseesssessseenseesssesssesseesssenseesssesssesnseesns 73
4-1. €_11ag@s BIt IMASKS ...eeeuiieiieriieiie ettt ettt sttt ettt st et e e bt e sate et e esbe e s st e eabeeabe e baessbesnbeebaennnesatean 74
4-3. DWARF Additions For ___ev64_opaque_ SUPPOTT......ccceeriirierieeieeiienieeieeieesieeseesteesieesinesaeeas 79
4-4. Typical EIf Note SEction FOIMAL.........c.coiviiriiriiiiieiierite ettt sttt st e st st beesaaesaee s 79
4-5. ODJECE FLE @.0 1uvteiiiiiiieiieeie ettt ettt et st ettt e st et e e bt e s it e s st e et e e baesabeeabe e baesatesaten 80
4-6. ODJECE FLE D0 .ttt sttt et ettt e b e st e st e et e bt e st e e be e beesatesate s 80
4-T. Merged ODJECt FIlE D0 .eeiiiiiiiiiiieieee ettt ettt ettt e st st e e beesatesate s 80
4-8. APU Td@NUIIETSouiiiiiiiiiiciiciie et s 81
4-9. Relocation Table..........ccociiiiiiiiiiiiiiii e 86
4-10. Relocation Table - CONtINUE..........coeecieriirieriiiieeneeieeetete ettt e eee 86
4-12. General Dynamic Initial REIOCAtIONSc..ccceevuirieiiiiiiiiiieieiieccreeeeeeeeee e 94
4-13. General Dynamic Outstanding RelOCAtIONScc.cocevieiiiriiiiinieiinieieeeeeeeeeee e 94
4-14. Local Dynamic Initial RelOCAtIONS.........cc.cocuiiiiiiiiiiiiiieieeieiceece et 95
4-15. Local Dynamic Outstanding ReloCations.............ccccoievieiiiiiiiiiniiiiiicieeeeeeeie e 95

Vii

4-16. Initial EXec INitial REIOCATIONSccoouvviiieeiirieeeeeitreeeceeteeeeeeetreeeeeeetaeeeeeeareeeeeeesaraeeeeeetreeeeeeareeeas 95

4-17. Initial Exec Outstanding REIOCAtIONScc.ceviiriiiriiiniiiiieiiterite sttt sttt st esaeesaee s 95
4-18. Local Exec Initial Relocations (SEQUENCE 1)c.eevuieriiriiiiiiiiierieeieeit ettt 96
4-19. Local Exec Initial Relocations (SEQUENCE 2)eevueeruiirieiriieniienieeieeieesiteete et esiee st steesieesaeesaeees 96
4-20. General Dynamic to Initial Exec Initial Relocations...........c.coceerieriieiiiienieniieiieenieeieeieeeeeee e 97
4-21. General Dynamic to Initial Exec Outstanding Relocations.............c.cceceverieniinienenenneneneeienene 97
4-22. General Dynamic to Initial Exec Replacement Initial Relocations...........cccccceeeeeeneiieniniecienncnne. 97
4-23. General Dynamic to Initial Exec Replacement Outstanding Relocations...........cccccoceecvenenieienncne. 97
4-24. General Dynamic to Local Exec Initial Relocationsccccoceeviiiiiiiiniininieneneceeeecieee 98
4-25. General Dynamic to Local Exec Outstanding Relocationsc.cccceeieieiiniinininiencnicieeene 98
4-26. General Dynamic to Local Exec Replacement Initial Relocationsccceveceeerencncnicnecnenncns 98
4-27. Local Dynamic To Local Exec Initial RElOCAtIONS.......c.cocevererierieiiininiinieieeeeeineneneeeceecene e 98
4-28. Local Dynamic To Local Exec Outstanding Relocations...........cccccuecevirinienienieneninenicneneeeeceennens 98
4-29. Local Dynamic To Local Exec Replacement Initial Relocations.............ccceveeveceeinienencnccnecnnennens 99
4-30. Initial Exec to Local Exec Initial RElOCAtIONScc.cierieiiirieiirieierceieeee et 99
4-31. Initial Exec to Local Exec Outstanding RelOCations...........cccevuecueiririniinienienieieineneneeeeeeeeesnens 99
4-32. Initial Exec to Local Exec Replacement Initial Relocationsc.ccecuererieniinienienenienenieenene 99
4-33. Initial Exec to Local Exec X-form Initial Relocationsccccoceeveririininieniinieienecieneeeeeeee 99
4-34. Initial Exec to Local Exec X-form Outstanding Relocations............ccoceevenerieneniniiencnicenencenens 100
4-35. Initial Exec to Local Exec X-form Replacement Initial Relocations...........c.cccceveeviencncencncnnens 100
4-36. TLS Relocation Table........cc.ccueiiiiiriiiieiiiiiniiitiieieteeeese ettt s e 102
5-1. Program Header EXamPIeccooioiiriiiiiiiiiiee ettt 105
5-2. Memory Segment MaAPPINGScccceveeririirieriirieniieeete sttt sttt et sttt estesbe et b este et smeenaesbeeanens 105
C-1. APU Extensions and Corresponding Power ISA Categories.........c.cecueverienerienieneniieneneenenennens 134
G20 APUS e e bbb s 134

viii

Preface

1. How To Read This Document

Implementations of this Power Architecture 32-bit Application Binary Interface Supplement should
indicate which ABI software features (see Appendix A) and Power ISA™ categories are implemented.
When reading this document, the reader should reference those constraints and selectively read this text
based upon them.

Appendix A provides a taxonomy of the information in this ABI document. The core of the ABI is
common to all implementations and appears as nonconditional text, tables, and graphics.

Optional ABI software feature text or Power ISA category specific text is represented in the taxonomy as
conditional attributes of the form ATR-FOO (where “FOQ” is one of the attributes described in
Appendix A). These attributes are used in the ABI text as element tags which aid in selective reading (and
the generation) of this ABI document. These attributes describe the relationship of the optional elements
of this document to a specific implementation.

This version of the Power Architecture 32-bit Application Binary Interface Supplement may take one of
the following forms:

Linux & Embedded
The unified ABI document contains all text from all implementations of the ABI.
Linux

The technical conditions governing implementations of the Linux ABI are described by attribute
conformance and inclusion rules in Appendix B, Section B.1. The attribute tags described in that part
of the appendix are used to conditionally generate the Linux ABI variant of this document.

Embedded

The technical conditions governing implementations of the Embedded ABI are described by
attribute conformance and inclusion rules in Appendix B, Section B.2. The attribute tags described
in that part of the appendix are used to conditionally generate the Embedded ABI variant of this
document.

Document elements representing Categories of the Power ISA are required for a software
implementation based upon the implementation's conformance with either Book I1I-S or Book III-E of
the Power ISA.

The following bounding box exemplifies a document element which corresponds to a category of the
Power ISA.

ATR-SPE

This is an example of conditional text that applies to implementations that support the Signal Processing
Engine (SPE) ABI, an optional category of the Power ISA.

Preface

This document also contains elements that correspond to optional ABI software features that may or may
not be present in specific implementations. A prime differentiation would be software features used in
embedded environments vs. those used in server environments, e.g., support for threading as defined by
the Thread Local Storage ABI, support for the secure-PLT, or support for dynamic linking.

!ATR-PASS-COMPLEX-AS-STRUCT

This is an example of conditional text that applies to an implementation which does not support a
specific software feature.

2. Section Numbering

The subsection numbering of the unified Linux & Embedded version of the Power Architecture 32-bit
Application Binary Interface Supplement is sequential and does not skip digits between sibling
subsections since it contains all of the text, tables, and graphics available.

The individual Linux and Embedded versions of the Power Architecture 32-bit Application Binary
Interface Supplement contain a subset of the text, tables, and graphics available. The subsection numbers
of these subset documents remain congruent with those of the Linux & Embedded version of the Power
Architecture 32-bit Application Binary Interface Supplement (and with each other where they overlap) in
order to prevent confusion during cross-reference and therefore subsection numbering can appear to skip
digits between sibling subsections.

Chapter 1. Introduction

The Executable and Linkable Format (ELF) defines a linking interface for executables and shared objects
in two parts. The first part is the generic System V ABI. The second part is a processor-specific
supplement.

This document is the processor-specific supplement for use with ELF on 32-bit Power Architecture
processor systems. This is not a complete System V Application Binary Interface Supplement because it
does not define any library interfaces.

Furthermore, this document establishes both big-endian and little-endian application binary interfaces
(see Section 3.1.2.1). Processors in the 32-bit Power Architecture can execute in either big-endian or
little-endian mode. Executables and executable generated data (in general) that subscribe to either byte
ordering are not portable to a system running in the other mode.

Note: This ABI specification does not address little-endian byte ordering prior to Power ISA 2.03.

The Power Architecture 32-bit Application Binary Interface Supplement is not the same as the 64-bit
PowerPC ELF ABI.

The Power Architecture 32-bit Application Binary Interface Supplement is intended to use the same
structural layout now followed in practice by other processor specific ABIs.

1.1. Reference Documentation

The archetypal ELF ABI is described by the System V ABI. Supersessions and addenda that are 32-bit
Power Architecture processor-specific are described in this document.

The following cited documents are complementary to this document and equally binding:

o Power Instruction Set Architecture Version 2.05, IBM, 2007.
http://www.power.org/resources/reading/PowerISA_V2.05.pdf

« DWARF Debugging Information Format Version 4, DWARF Debugging Information Format
Workgroup, 2010. http://dwarfstd.org/Dwarf4Std.php

« ISO/IEC 9899:1999(E): Programming languages—C, as amended by ISO/IEC
9899:1999/Cor.1:2001(E), ISO/IEC 9899:1999/Cor.2:2004(E) and ISO/IEC
9899:1999/Cor.3:2007(E), http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf

ATR-SPE

« SPEPIM: Signal Processing Engine Auxiliary Processing Unit Programming Interface Manual,
Freescale Semiconductor, 2004.
http://www.freescale.com/files/32bit/doc/ref_manual/SPEPIM.pdf?fsrch=1

ATR-VECTOR

« ALTIVECPIM: AltiVec (TM) Technology Programming Interface Manual, Freescale Semiconductor,
1999. http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

Chapter 1. Introduction

ATR-DFP

« ISO/IEC TR 24732:2009 - Programming languages, their environments and system software
interfaces - Extension for the programming language C to support decimal floating-point arithmetic,
ISO/IEC, January 05, 2009. Available from ISO.

ATR-CXX

s [tanium C++ ABI: Exception Handling. Rev 1.22, CodeSourcery, 2001.
http://www.codesourcery.com/public/cxx-abi/abi-eh.html

ATR-TLS

« ELF Handling for Thread-Local Storage. Version 0.20, Ulrich Drepper, Red Hat Inc., December 21,
2005. http://people.redhat.com/drepper/tls.pdf

The following documents are of interest for their historical information but are not normative in any way.

» The [32-bit] PowerPC Processor Supplement, Sun Microsystems, 1995.
+ The 32-bit AIX ABL.
+ The PowerOpen ABI.

Chapter 2. Software Installation

2.1. Physical Distribution Media and Formats

This document does not specify any physical distribution media or formats. Any agreed-upon
distribution media may be used.

Chapter 3. Low Level System Information

3.1. Machine Interface

3.1.1. Processor Architecture

This Application Binary Interface (ABI) is not explicitly predicated on a minimum Power ISA version.

All nonoptional instructions that are defined by the Power Architecture® can be assumed to be
implemented and work as specified. ABI conforming implementations must provide these instructions
through software emulation if they are not provided by the processor.

Note: The exceptions to this rule are the Fixed-point Load and Store Multiple and Fixed-point Move
Assist instructions which are not available in little-endian implementations because they would cause
alignment exceptions.

Processors may support additional instructions beyond the published Instruction Set Architecture (ISA)
and the Power Architecture optional ones, through Auxiliary Processing Units (APUs). This ABI
provides a method for describing the additional instructions in section information (see Section 4.4 and
Section 4.10) but does not address these additional instructions directly and executing them may result in
undefined behavior.

This ABI does not explicitly impose any performance constraints on systems.

3.1.2. Data Representation

3.1.2.1. Byte Ordering

The following standard data formats are recognized:

« 8-bit byte

« 16-bit halfword

+ 32-bit word

+ 64-bit doubleword
+ 128-bit quadword

In big-endian byte ordering, the most significant byte is located in the lowest addressed byte position in
memory (byte 0). This byte ordering is alternately referred to as Most Significant Byte (MSB) ordering.

In little-endian byte ordering, the least significant byte is located in the lowest addressed byte position in
memory (byte 0). This byte ordering is alternately referred to as Least Significant Byte (LSB) ordering.

A specific processor implementation must state which type of byte ordering is to be used.

Chapter 3. Low Level System Information

ATR-SPE

Although it is possible on some processors to map some pages as little-endian, and other pages as
big-endian in the same application, such an application does not conform to the ABI.

Table 3-1, Table 3-2, Table 3-3, and Table 3-4 show the conventions being assumed in big-endian and
little-endian byte ordering at the bit and byte levels. These conventions are applied to integer and
floating-point data types. Byte numbers are indicated in the upper corners, and bit numbers in the lower
corners. Little-endian byte numbers are indicated on the right side; big-endian byte numbers are

indicated on the left side.

Table 3-1. Bit and Byte Numbering in Halfwords

0 1|1
msb
0 718

Isb

0

15

Table 3-2. Bit and Byte Numbering in Words

0 311
msb
0 718

2

15

2

16

1

23

3

24

Isb

0

31

Table 3-3. Bit and Byte Numbering

in Doublewords

0 711 612 513 4
msb
7 15 |16 23 |24 31
4 216 1|7 0
Isb
32 39 |40 47 |48 55 |56 63

Chapter 3. Low Level System Information

Table 3-4. Bit and Byte Numbering in Quadwords

0 15 |1 14 |2 13 |3 12
msb

718 15 |16 23 |24 31
4 11 10 |6 917 8
32 39 140 47 |48 55 |56 63
8 719 6 |10 51|11 4
64 71 |72 79 {80 87 | 88 95
12 3113 2 |14 1115 0

Isb

96 103 | 104 111 [112 119 [120 127

Note: In the Power ISA, the figures are generally only shown in big-endian byte order. The bits in
these data format specification are numbered from left to right (MSB to LSB).

ATR-SPE

Note: SPE documentation uses 64-bit numbering throughout, including for registers such as the CR
that only contain 32 bits. This numbering can lead to some confusion. For example, although the CR
bits are now numbered from 32 to 63, the same assembly instructions still work: crxor 6,6, 6
operates on bit 32 + 6, that is, CR[38]. When discussing register contents, the bits are numbered 0 :
63 for 64-bit registers and 32 : 63 for 32-bit registers. When discussing memory contents, the bits are
numbered naturally (for example, 0 : 7 for bits within one byte and 0 : 15 for bits within halfwords).

The bit numbering in the Power ISA is all 64-bit except for the following registers indicated in Power
ISA section 1.4:

+ Opcodes marking 0-31

ATR-VECTOR

+ Vector registers and the VSCR (see Section 3.2.1).

ATR-CLASSIC-FLOAT

+ As of Power ISA version 2.05 the FPSCR has been extended from 32-bits to 64-bits. The fields of the
original 32-bit FPSCR are now held in bits 32-63 of the 64-bit FPSCR. The assembly instructions
which operate upon the 64-bit FPSCR have either had a W Instruction Field added to select the
operative word for the instruction, e.g., mt £s£1i, or the instruction has been extended to operate upon

Chapter 3. Low Level System Information

the entire 64-bit FPSCR, e.g., mf £s. Reference to fields of the FPSCR, representing 1 or more bits, is
done by field number with an indication of the operative word rather than by bit-number.

If the Power ISA version 2.05 DFP category is not needed by an implementation the FPSCR may
continue to be referenced as a 32-bit register using the old forms of the instructions to support binary

compatibility of ELF files built against an older Power ISA version. See Section 3.2.1 for more

information on the FPSCR.

3.1.2.2. Fundamental Types

The following tables map the data format specifications described in the Power ISA to ISO C scalar
types. Each scalar type has a required alignment, which is indicated in the alignment column. Usage of
these types in data structures must follow the alignment specified in the order encountered to ensure

consistent mapping. When using variables individually, more strict alignment may be imposed if it has

optimization benefits.

Table 3-5. Fundamental Types

Type ISO C Types sizeof Alignment Description
Boolean _Bool 1 byte boolean
Character char 1 byte unsigned byte
unsigned char
signed char 1 byte signed byte
short 2 halfword signed halfword
signed short
unsigned short 2 halfword unsigned halfword
Enumeration signed enum 4 word signed word
unsigned enum 4 word unsigned word
Integral int 4 word signed word
signed int
long int
signed long
unsigned int 4 word unsigned word
unsigned long
long long 8 doubleword signed doubleword
signed long long
unsigned long long doubleword unsigned doubleword
Pointer any * 4 word unsigned word
any (*) ()
Floating float 4 word single-precision float
double 8 doubleword double-precision float

Chapter 3. Low Level System Information

A NULL pointer has all bits zero.

Note: A boolean value is represented as a byte with value 0 or 1. If a byte with a value other than 0 or
1 is evaluated as a boolean value (for example, through the use of unions), the behavior is undefined.

Note: If an enumerated type contains a negative value, it is compatible with and has the same
representation and alignment as int; otherwise it is compatible with and has the same representation
and alignment as unsigned int.

Note: For each real floating-point type there is a corresponding complex type. This has the same
alignment as the real type and twice the size; the representation is the real part followed by the
imaginary part.

ATR-SPE
Table 3-6. SPE Types

Type SPEPIM C Types sizeof Alignment Description

vector-64 _ ev64_ul6__ 8 doubleword vector of four unsigned

halfwords

_evbd_sl6_ 8 doubleword vector of four signed
halfwords

_evbd u32 8 doubleword vector of two unsigned words

_evbd_s32_ 8 doubleword vector of two signed words

_evod_fs__ 8 doubleword vector of two single-precision
floats

__evbd_u6d__ 8 doubleword 1 unsigned doubleword

__evbd_s64__ 8 doubleword 1 signed doubleword

__ev64_opaque__ 8 doubleword any of the above

Chapter 3. Low Level System Information

ATR-VECTOR
Table 3-7. Vector Types
Type ALTIVECPIM C sizeof Alignment Description
Types
vector-128 vector unsigned char 16 quadword vector of sixteen unsigned

bytes

vector signed char 16 quadword vector of sixteen signed bytes

vector unsigned short 16 quadword vector of eight unsigned
halfwords

vector signed short 16 quadword vector of eight signed
halfwords

vector unsigned int 16 quadword vector of four unsigned words

vector signed int 16 quadword vector of four signed words

vector float 16 quadword vector of four single-precision
floats

ATR-SPE && ATR-VECTOR

Note: Availability of Vector data types is subject to conformance to a Power ISA category where the
categories “Vector” and “SPE” are mutually exclusive.

ATR-DFP
Table 3-8. Decimal Floating-Point Types
Type ISO TR 24732 C sizeof Alignment Description
Types
Decimal _Decimal32 4 word single-precision decimal float
Floating
_Decimal64 8 doubleword double-precision decimal float
_Decimal128 16 quadword quad-precision decimal float

Chapter 3. Low Level System Information

ATR-LONG-DOUBLE-IBM
Table 3-9. IBM® AIX® Long Double 128 Type

Type ISO C Types sizeof Alignment Description
IBM AIX long double 16 quadword two double-precision floats
long double

ATR-LONG-DOUBLE-IS-DOUBLE
Table 3-10. Long Double Is Double Type

Type ISO C Types sizeof Alignment Description
long double long double 8 doubleword double-precision float
is double

ATR-LONG-DOUBLE-IBM & & ATR-LONG-DOUBLE-IS-DOUBLE

Note: Availability of the long double data type is subject to conformance to a long double standard
where the IBM AIX 128-bit Long Double format and the Long Double is Double format are mutually
exclusive.

ATR-LONG-DOUBLE-IS-DOUBLE Il ATR-LONG-DOUBLE-IBM

This ABI provides the following choices for implementation of long double in compilers and systems:

ATR-LONG-DOUBLE-IS-DOUBLE

- Do not support any floating-point types with greater precision than double. In this case, long
doubles and doubles have the same size and precision.

ATR-LONG-DOUBLE-IBM

« Provide support for the IBM AIX 128-bit Long Double format. In this format, double precision
numbers with different magnitudes that do not overlap, provide an effective precision of 106-bits.
The high-order double-precision value (the one that comes first in storage) must have the larger
magnitude. The high-order double-precision value must equal the sum of the two values, rounded
to nearest double.

10

Chapter 3. Low Level System Information

Extended precision provides the same range of double-precision (about 10°% to 10%° but more
precision (a variable amount, about 31 decimal digits or more).

- As the absolute value of the magnitude decreases (near the denormal range), the precision
available in the low-order double also decreases.

+ When the value represented is in the denormal range, this representation provides no more
precision than 64-bit (double) floating-point.

- The actual number of bits of precision can vary. If the low-order part is much less then 1 unit of
least precision (ULP) of the high-order part, significant bits (either all Os or all 1s) are implied
between the significands of high-order and low-order numbers. Some algorithms that rely on
having a fixed number of bits in the significand can fail when using extended-precision.

This implementation differs from the IEEE 754 Standard in the following ways:

- The software support is restricted to round-to-nearest mode. Programs that use
extended-precision must ensure that this rounding mode is in effect when extended-precision
calculations are performed.

Does not fully support the IEEE special numbers NaN and INF. These values are encoded in
the high-order double value only. The low-order value is not significant, but the low-order value
of an infinity must be positive or negative zero.

Does not support the IEEE status flags for overflow, underflow, and other conditions. These
flags have no meaning in this format.

3.1.2.3. Aggregates and Unions

The following are the rules for aggregates (structures and arrays) and unions that apply to their alignment
and size.

+ The entire aggregate or union must be aligned to its most strictly aligned member, which corresponds
to the member with the largest alignment, including flexible array members.

« Each member is assigned the lowest available offset that meets the alignment requirements of the
member. Depending on the previous member, internal padding can be required.

« The entire aggregate or union must have a size that is a multiple of its alignment. Depending on the
last member, tail padding can be required.

For the following figures, the big-endian byte offsets are located in the upper left corners, and the
little-endian byte offsets are located in the upper right corners.

11

Figure 3-1. Structure Smaller Than a Word

struct {
char c¢;
bi

byte aligned, sizeof is 1

0 0
c

Figure 3-2. Structure With No Padding

struct {
char «c;
char d;
short s;
int n;

bi

word-aligned, sizeof is 8

little-endian

2 1 0
S d c
4
n
big-endian
0 1 2
c d s
4
n

Figure 3-3. Structure With Internal Padding

struct {
char «c¢;
short s;

bi

halfword-aligned, sizeof is 4

little-endian

Chapter 3. Low Level System Information

12

big-endian

0 1 2
c pad S

Figure 3-4. Structure With Internal and Tail Padding

struct {

char c;
double d;
short s;

}i

doubleword-aligned, sizeof is 24

little-endian

1 0
pad c
4
pad
8
d
12
d
18 16
pad S
20
pad
big-endian
0 1
c pad
4
pad
8
d
12
d
16 18
S pad
20
pad

Chapter 3. Low Level System Information

13

Chapter 3. Low Level System Information
Figure 3-5. Union Allocation

union {
char «c¢;
short s;
int J;

bi

word-aligned, sizeof is 4

little-endian

1 0
pad c
2 0
pad S
0
J
big-endian
0 1
c pad
0 2
S pad
0
J

3.1.2.4. Bit-fields

Bit-fields can be present in definitions of C structures and unions. These bit-fields define whole objects
within the structure or union where the number of bits in the bit-field is specified.

In the following table, a signed range goes from -(2*") to (2*-") - 1 and an unsigned range goes from 0
(2" -1.

14

Chapter 3. Low Level System Information

Table 3-11. Bit-Field Types

Bit-field Type Width (w)
_Bool 1

signed char 1to8
unsigned char

signed short 1to 16
unsigned short

signed int 1to32
signed long

unsigned int
unsigned long

enum

signed long long 1to 64

unsigned long long

Bit-fields can be signed or unsigned of type short, int, long, or long long. However, bit-fields shall have
the same range for each corresponding type; for example, signed short must have the same range as
unsigned short. All members of structures and unions must comply with the size and alignment rules
including bit-fields. The following list of size and alignment rules additionally apply to bit-fields:

» The allocation of bit-fields is determined by the system endianess. For little-endian implementations
the bit allocation is from the least significant (right) end to the most significant (left) end. The reverse
is true for big-endian implementations; the bit allocation is from most significant (left) end to the least
significant (right) end.

« A bit-field cannot cross its unit boundary; it must occupy the storage unit allocated for its declared
type.

« If there is enough space within a storage unit, bit-fields must share the storage unit with other structure
members, including members that are not bit-fields. Clearly all the structure members occupy different
parts of the storage unit.

+ The types of unnamed bit-fields have no effect on the alignment of a structure or union. However the
offsets of an individual bit-field’s member must comply with the alignment rules. An unnamed
bit-field of zero width causes sufficient padding (possibly none) to be inserted for the next member, or
the end of the structure if there are no more nonzero width members, to have an offset from the start of
the structure that is a multiple of the size of the declared type of the zero-width member.

The byte offsets for structure and union members are shown in the examples below. The little-endian
byte offsets are given in the upper right corners, and the big-endian byte offsets are given in the upper left
corners. The bit numbers are given in the lower corners.

Table 3-12. Bit Numbering for 0x01020304

0 301 2|2 1|3 0
01 02 03 04
0 718 15 |16 23 |24 31

15

Figure 3-6. Simple Bit-field Allocation

struct {
int J
int k :
int m :

bi

word-aligned,

little-endian

sizeof is 4

0
pad m k]
0 13 |14 20 |21 26 |27 31
big-endian
0
] k m pad
0 4|5 10 |11 17 |18 31

Figure 3-7. Bit-Field Allocation With Boundary Alignment

struct {
short s :
int |
char c;
short t :
short u :
char d;

bi

word-aligned,

little-endian

sizeof is 12

3 0
c pad] S
0 718 13 |14 22 |23 31
5
pad u pad t
0 6|7 15 |16 22 123 31
9 8
pad d
0 23 |24 31

Chapter 3. Low Level System Information

16

Chapter 3. Low Level System Information

big-endian
0 3
S j pad c
819 17 |18 23 (24 31
4 6
t pad u pad
0 8 15 |16 24 |25 31
8
d pad
0 718 31

Figure 3-8. Bit-Field Allocation With Storage Unit Sharing

struct {
char «c¢;
short s : 8;

bi

halfword-aligned, sizeof is 2

little-endian

1 0
S C
0 718 15
big-endian
0 1
C S
0 718 15

Figure 3-9. Bit-Field Allocation In A Union
union {
char c;

short s : 8;
bi

halfword-aligned, sizeof is 2

17

little-endian

1 0
pad c
0 718 15
0
pad S
0 718 15
big-endian
0 1
c pad
0 718 15
0 1
S pad
0 718 15

Figure 3-10. Bit-Field Allocation With Unnamed Bit-Fields

struct {
char «c;
int
char d;
short :
char e;

bi

byte aligned,

little-endian

: 05

9;

sizeof is 9

1 0
:0

0 23 |24 31
6 4

pad 9 pad
0 6 |7 15 |16 23 |24 31
8
24 31

Chapter 3. Low Level System Information

18

Chapter 3. Low Level System Information

big-endian
0 1

c :0
0 718 31
4 6

d pad 9 pad

718 15 |16 24 |25 31

8

e
0 7

Note: In Figure 3-10 the alignment of the structure is not affected by the unnamed short and int
fields. The named members are aligned relative to the start of the structure. However, it is possible
that the alignment of the named members is not on optimum boundaries in memory. For instance, in
an array of the structure in Figure 3-10, the d members will not all be on 4-byte (integer) boundaries.

3.2. Function Calling Sequence

The standard sequence for function calls is outlined in this section. The layout of the stack frame, the
parameter passing convention, and the register usage is also detailed in this section. Standard library
functions use these conventions, except as documented for the register save and restore functions.

The conventions given in this chapter are adhered to by C programs. Further information on the
implementation of C is given in Section 3.3.

Note: While it is recommended that all functions use the standard calling sequence, the
requirements of the standard calling sequence are only applicable to global functions. Different
calling sequences and conventions can be employed by local functions which cannot be reached
from other compilation units, if they comply with the stack back trace requirements.

ATR-LONG-DOUBLE-IS-DOUBLE

Note: If long double has the same representation as double, then all statements about how double
values are passed to and returned from functions also apply to long double, and all statements about
how _Complex double values are passed to and returned from functions also apply to _Complex
long double.

3.2.1. Registers

Programs and compilers may freely use all registers except those reserved for system use. The system
signal handlers are responsible for preserving the original values upon return to the original execution

19

Chapter 3. Low Level System Information

path. Signals that can interrupt the original execution path are documented in (BA-OS) in the System V
Interface Definition.

The tables in Section 3.2.1.1 give an overview of the registers that are global during program execution.
The tables use three terms to describe register Preservation Rules:
nonvolatile

A caller can expect that the contents of all registers marked nonvolatile are valid after control
returns from a function call.

A callee shall save the contents of all registers marked nonvolatile prior to modification. The callee
must restore the contents of all such registers before returning to its caller.

volatile

A caller cannot trust that the contents of registers marked volatile have been preserved across a
function call.

A callee need not save the contents of registers marked volatile before modification.
limited-access

The contents of registers marked limited-access have special preservation rules. These registers
have mutability restricted to certain bit-fields as defined by the Power ISA. The individual bits of
these bit-fields are defined by this ABI to be limited-access.

Under normal conditions a caller can expect that these bits have been preserved across a function
call. Under the special conditions, indicated in Section 3.2.1.2, a caller shall expect that these bit
will have changed across function calls even if they have not.

A callee may only permanently modify these bits without preserving the state upon entrance to the
function if the callee satisfies the special conditions indicated in Section 3.2.1.2; otherwise, these
bits must be preserved before modification and restored before returning to the caller.

3.2.1.1. Register Roles

In the 32-bit Power Architecture, there are always 32 general-purpose registers, each 32 bits wide.
Throughout this document the symbol rN is used, where N is a register number, to refer to
general-purpose register N.

20

Chapter 3. Low Level System Information
Table 3-13. Register Roles

Register Preservation Rules Purpose

0 volatile Optional in function linkage
rl nonvolatile Stack frame pointer

2 nonvolatile See the following table

r3-16 volatile Parameter and return value
r7-r10 volatile Additional function parameters
rl1-r12 volatile Optional in function linkage
rl3 nonvolatile Small data area pointer
r14-r31 nonvolatile Local variables

LR volatile Link register

CTR volatile Loop count register

XER volatile Fixed point exception register
CRO-CR1 volatile Condition register fields
CR2-CR4 nonvolatile Condition register fields
CR5-CR7 volatile Condition register fields

Optional Function Linkage

A function cannot depend on the values of those registers optional in the function linkage (10, r11, and
r12) because they may be altered by inter-library calls.

Stack Frame Pointer

The stack pointer always points to the lowest allocated valid stack frame. It must maintain quadword
alignment and grow toward the lower addresses. The contents of the word at that address always
points to the previously allocated stack frame. A called function is permitted to decrement it if
required. See Section 3.3.9 for additional information.

Small Data Area Pointer

Register r13 is the small data area pointer. Process start up code for executables that reference data in
the small data area with 16-bit offset addressing relative to r13 must load the base of the small data
area (the value of the dynamic linker-defined symbol _spa_BASE_) into r13. Shared objects shall not
alter the value in r13. See Section 4.7 for more details.

Link Register

The link register contains the address a called function normally returns to. It is volatile across
function calls.

21

Chapter 3. Low Level System Information

Condition Register Fields

In the condition register, the bit-fields CR2, CR3, and CR4 are nonvolatile and the value on entry must
be restored on exit. The other bit-fields are volatile. The bit-field CR6 shall be set by the caller of a
variable argument list function as described in Section 3.2.4.

ATR-TLS
Table 3-14. TLS ABI Register Role for General-Purpose Register 2

Register Preservation Rules Purpose

2 nonvolatile Thread pointer

ATR-PASS-COMPLEX-IN-GPRS
Table 3-16. Register Roles for the _Complex float and _Complex double Types

Register Preservation Rules Purpose

r3-r10 volatile Used for _Complex float and _Complex double
parameters and return values.

ATR-PASS-COMPLEX-IN-GPRS && ATR-LONG-DOUBLE-IBM
Table 3-17. Register Roles for the _Complex Long Double Type

Register Preservation Rules Purpose

r3-r10 volatile Used for the _Complex long double parameters and
return values.

ATR-SECURE-PLT

Under the Secure-PLT ABI, when using the Position-Independent Code (PIC) addressing model, register
130 is used (by convention between compiler & link editor) in nonleaf functions to hold the Global Offset
Table (GOT) pointer. See Section 5.2.5.2 for information on the Secure-PLT.

Table 3-18. Secure-PLT Register Role for General-Purpose Register 30

Register Preservation Rules Purpose

r30 nonvolatile GOT pointer under the Secure-PLT with the
Position-Independent Code (PIC) addressing model

22

Chapter 3. Low Level System Information

ATR-CLASSIC-FLOAT

On Power Architecture processors that support Power ISA category Floating-point, there are always 32

floating-point registers, each 64 bits wide, and an associated special-purpose register to provide

floating-point status and control. Throughout this document the symbol fN is used, where N is a register
number, to refer to floating-point register N.

Table 3-19. Floating-Point Register Roles for Binary Floating-Point Types

Register Preservation Rules Purpose

0 volatile

fl volatile Used for parameter passing and return values of
binary float types.

f2-f8 volatile Used for parameter passing of binary float types.

f9-f13 volatile

f14-f31 nonvolatile

FPSCR limited-access Floating point status and control register

limited-access bits. Preservation rules governing the
limited-access bits for the bit-fields [VE], [OE],
[UE], [ZE], [XE], and [RN] are presented in Section
3.2.1.2.

The ISA Decimal Floating-Point category extends the Power Architecture by adding a decimal

ATR-CLASSIC-FLOAT && ATR-DFP

floating-point unit. It uses the existing 64-bit floating-point registers and extends the FPSCR register to
64-bits, where it defines a decimal rounding-control field in the extended space.

Table 3-20. Floating-Point Register Roles for Decimal Floating-Point Types

Register Preservation Rules Purpose

0 volatile

f1 volatile Used for parameter passing and return values of
single-precision and double-precision decimal
floating-point types.

f2-f8 volatile Used for parameter passing and return values of
quad-precision decimal floating-point types.

f9-f13 volatile

f14-f31 nonvolatile

FPSCR limited-access Floating point status and control register

limited-access bits. Preservation rules governing the
limited-access bits for the bit-field [DRN] are
presented in Section 3.2.1.2.

23

Chapter 3. Low Level System Information

ATR-SOFT-FLOAT

Table 3-21. Soft-Float General-Purpose Register Roles for Binary Floating-Point Types

Register

Preservation Rules Purpose

r3-r10

volatile

Volatile parameter and return value registers for float,
double, and long double binary floating-point types.

If the parameters are within the first eight words of
the parameter list:

* Float values occupy a single GPR.
* Double values occupy adjacent GPRs.
* Long double values occupy four adjacent GPRs.

There are special rules governing how parameters
that span multiple GPRs should be split between
registers and the parameter save area outlined in
Section 3.2.3.

ATR-SOFT-FLOAT & & ATR-DFP

Table 3-22. Soft-Float General-Purpose Register Roles for Decimal Floating-Point Types

Register

Preservation Rules Purpose

r3-r10

volatile

Volatile parameter and return value registers for
_Decimal32, _Decimal64, and _Decimal128
Decimal floating-point types

If the parameters are within the first eight words of
the parameter list:

¢ _Decimal32 values occupy a single GPR.
* _Decimal64 values occupy adjacent GPRs.
¢ _Decimal128 values occupy four adjacent GPRs.

There are special rules governing how parameters
that span multiple GPRs should be split between
registers and the parameter save area outlined in
Section 3.2.3.

24

Chapter 3. Low Level System Information

ATR-VECTOR

The ISA Vector category extends the Power Architecture and provides 32 vector registers, each 128 bits
wide, a special-purpose register VRSAVE, and a special-purpose register VSCR. Throughout this
document the symbol vN is used, where N is a register number, to refer to vector register N.

Table 3-23. Vector Register Roles

Register Preservation Rules Purpose

v0-v1 volatile

v2 volatile Used for parameter passing and return values
v3-v13 volatile Used for parameter passing

v14-v19 volatile

v20-v31 nonvolatile

VRSAVE nonvolatile 32-bit VR Save Register.

VSCR limited-access 32-bit vector status and control register. Preservation

rules governing the limited-access bits for the
bit-field [NJ] are presented in Section 3.2.1.2.

ATR-SPE

The ISA Signal Processing Engine (SPE) category provides upper words for the 32 general-purpose
registers, thus allowing them to be used in SPE APU operations to hold two 32-bit words. The Signal
Processing Engine category also provides several special-purpose registers. The volatility of all 64-bit
registers is the same for the upper and lower word. If only the lower word is modified by a function, only
the lower word need be saved and restored.

Table 3-24. SPE Register Roles

Register Preservation Rules Purpose

SPEFSCR limited-access Signal processing and embedded floating-point status
and control register. Preservation rules governing the
limited-access bits for the bit-fields [FINXE],
[FINVE], [FDBZE], [FUNFE], [FOVFE], and
[FRMC] are presented in Section 3.2.1.2.

ACC volatile 64-bit SPE accumulator register.

3.2.1.2. Limited-Access Bits

The Power ISA identifies a number of registers which have mutability limited to the specific bit-fields
indicated in the following list:

25

Chapter 3. Low Level System Information

ATR-CLASSIC-FLOAT
FPSCR [VE]
The Floating-Point Invalid Operation Exception Enable bit [VE] of the FPSCR register.

ATR-CLASSIC-FLOAT
FPSCR [OE]
The Floating-Point Overflow Exception Enable bit [OE] of the FPSCR register.

ATR-CLASSIC-FLOAT
FPSCR [UE]
The Floating-Point Underflow Exception Enable bit [UE] of the FPSCR register.

ATR-CLASSIC-FLOAT
FPSCR [ZE]
The Floating-Point Zero Divide Exception Enable bit [ZE] of the FPSCR register.

ATR-CLASSIC-FLOAT
FPSCR [XE]
The Floating-Point Inexact Exception Enable bit [XE] of the FPSCR register.

ATR-CLASSIC-FLOAT
FPSCR [RN]
The Binary Floating-Point Rounding Control field [RN] of the FPSCR register.

26

Chapter 3. Low Level System Information

ATR-DFP
FPSCR [DRN]
The DFP Rounding Control field [DRN] of the 64-bit FPSCR register.

ATR-VECTOR
VSCR [NJ]]
The Vector Non-Java Mode field [NJ] of the VSCR register.

ATR-SPE
SPEFSCR [FINXE]
The Embedded Floating-Point Round (Inexact) Exception Enable field [FINXE] of the SPEFSCR
register.
ATR-SPE

SPEFSCR [FINVE]

The Embedded Floating-Point Invalid Operation/Input Error Exception Enable field [FINVE] of
the SPEFSCR register.

ATR-SPE
SPEFSCR [FDBZE]

The Embedded Floating-Point Divide By Zero Exception Enable field [FDBZE] of the SPEFSCR
register.

ATR-SPE
SPEFSCR [FUNFE]

The Embedded Floating-Point Underflow Exception Enable field [FUNFE] of the SPEFSCR
register.

27

Chapter 3. Low Level System Information

ATR-SPE
SPEFSCR [FOVFE]
The Embedded Floating-Point Overflow Exception Enable field [FOVFE] of the SPEFSCR register.

ATR-SPE
SPEFSCR [FRMC(]
The Embedded Floating-Point Rounding Mode Control field [FRMC] of the SPEFSCR register.

The bits composing these bit-fields are identified as limited-access because this ABI manages how they
are to be modified and preserved across function calls.

Limited-access bits may be changed across function calls only if the called function has specific
permission to do so as indicated by the following conditions.

A function without permission to change the /imited-access bits across a function call shall save the
value of the register before modifying the bits and restore it before returning to its calling function.
Limited-Access Conditions

+ Standard library functions expressly defined to change the state of limited-access bits are not
constrained by nonvolatile preservation rules, e.g., the fesetround () and feenableexcept ()
functions.

+ All other standard library functions shall save the old value of these bits on entry, change the bits for
their purpose, and restore the bits before returning.

+ Where a standard library function such as gsort () calls functions provided by an application the
following rules shall be observed:

- The limited-access bits on entry to the first call to such a callback must have the values they had on
entry to the library function.

- The limited-access bits on entry to a subsequent call to such a callback must have the values they
had on exit from the previous call to such a callback.

« The limited-access bits on exit from the library function must have the values they had on exit from
the last call to such a callback.

« The compiler can directly generate code that saves and restores the limited-access bits.

+ The values of the limited-access bits are unspecified on entry into a signal handler because a library or
user function can temporarily modify the limited-access bits when the signal was taken.

28

Chapter 3. Low Level System Information

+ When set jmp () returns from a direct invocation, the limited-access bits must have the values they
had on entry to setjmp; when it returns from a call to longijmp (), the limited-access bits must have
the values they had on entry to longjmp ().

ATR-CLASSIC-FLOAT

+ C Library intrinsics, such as _FPU_SETCW () , may modify the limited-access bits of the FPSCR.

ATR-VECTOR
« The ALTIVEC PIM vec_mtvscr () intrinsic may change the limited-access NJ bit.

ATR-SPE

+ The following intrinsics defined by the SPE PIM may change the limited-access bits of the SPEFCSR
register:

__ev_clr_spefscr_sovh() __ev_clr_spefscr_sov() __ev_clr_spefscr_finxs/()
__ev_clr_spefscr_finvs () __ev_clr_spefscr_fdbzs () __ev_clr_spefscr_funfs()
__ev_clr_spefscr_fovfs() __ev_set_spefscr_frmc()

ATR-SOFT-FLOAT

+ Any data stored internally by software floating-point code to describe rounding modes and enabled
exceptions is subject to the same rules as limited-access register bits.

Note: The unwinder does not need to make specific allowances for limited-access bits.

3.2.2. The Stack Frame

A function shall establish a stack frame if it requires the use of nonvolatile registers, its local variable
usage can’t be optimized into registers, or it calls another function. It need only allocate space for the
required stack frame elements, namely the backchain pointer, the LR save area, and padding to the
required alignment.

Figure 3-11 shows the relative layout of an allocated stack frame following a nonleaf function call, where
the stack pointer points to the backchain word of the caller’s stack frame. In general the stack pointer
always points to the backchain word of the most recently allocated stack frame.

29

Figure 3-11. Stack Frame Organization

High Address

Y
Low Address

[;Back Chain

Alignment Padding to
Quadword Boundary

| LR Save Area | [
Back Chain }

Category Specific
Register Save Areas

|Register Save Areas |
[CR Save Area |

ory Specific Save-
m Area

Alignment Padding to
Quadword Boundary

[Additiona.l Category

Specific Register
Save Areas

[Local Variable Space |
| Parameter Save Area |
|LR Save Area]

Back Chain

L,

GPR1
Stack Pointer |

Chapter 3. Low Level System Information

.

Caller's
Stack
Frame

Current
Stack
Frame

In Figure 3-11 the green areas indicate an optional save area of the stack frame. Refer to Section 3.2.2.2
for a description of the optional save areas described by this ABIL.

3.2.2.1. General Stack Frame Requirements

The following general requirements apply to all stack frames:

« The stack shall be quadword-aligned.

+ The minimum stack frame size shall be 16 bytes. A minimum stack frame consists of the first two

words (backchain word and LR save word), with padding to meet the 16-byte alignment requirement.

« There is no maximum stack frame defined.

« Padding shall be added to the local variable space of the stack frame to maintain the defined stack

frame alignment in the absence of register save areas.

30

Chapter 3. Low Level System Information

« The stack pointer (r1), shall always point to the lowest address word of the most recently allocated
stack frame.

« The stack shall start at high addresses and grow downward toward lower addresses.

+ The lowest address word (the backchain word in Figure 3-11) shall point to the previously allocated
stack frame. An exception occurs with the first stack frame, which shall have a value of 0 (NULL).

« If required, the stack pointer shall be decremented in the called function’s prologue and restored in the
called function’s epilogue.

« The stack pointer shall be updated atomically so that, at all times, it points to a valid backchain word.
This update may be achieved in a number of ways, as indicated in Section 3.3.3.3.

« Before a function calls any other functions, it shall save the value of the LR register into the LR save
area of the caller’s stack frame.

Note: An optional frame pointer may be created if necessary (e.g., as a result of dynamic allocation
on the stack as described in Section 3.3.9) to address arguments or local variables.

A sample of a minimum stack frame allocation is demonstrated in Figure 3-12 containing these
requirements.

Figure 3-12. Example Minimum Stack Frame Allocation

stwu 1,-32(1) - Store backchain, decr SP
mflr 0 - Copy LR to RO
stw 0,36(1) - Store LR in previous LR save area

3.2.2.2. Optional Save Areas

This ABI provides a stack frame with a number of optional save areas. This section will indicate the
relative position of these save areas in relation to each other and the primary elements of the stack frame.

Because the back chain word of a stack frame must maintain quadword alignment the following save
area diagrams indicate that an optional special purpose padding element might be necessary near the
low-address end of a stack frame (above the link register save).

An optional alignment padding to quadword boundary element might be necessary near the high-address
end of the stack in order to quadword-align the low-address beginning of a register save area
immediately below it, e.g, Figure 3-18.

Register Save Areas

ATR-CLASSIC-FLOAT
Floating-Point Register Save Area

If a function is to change the value in any nonvolatile floating-point register frn it shall first save the
value frn in the Floating-Point Register Save Area in a doubleword located 8 x (32 - n) bytes before
the back chain word of the previous frame, as shown in Figure 3-13.

31

Chapter 3. Low Level System Information

Figure 3-13. General-Purpose and Floating-Point Register Save Areas

High Add: Address Caller'
18 ress of Caller's Back Chain R sflacirs
Back Chain L ' Frame
Bbytes | fr(31) M
8-bytes
-8x(32-n) Floating-Point
bytes =% Register Save Area
fr(n + 1)
8-bytes
fr(n)
Start of FPR
Save Area — 8-bytes
-4 bytes -{’ Current
k r(31) Stack
(. Frame
-4x(32-n) -
General-Purpose
bytes =S Register Save Area
r(n + 1)
Start of GPR
Save Area r(n)
Special Purpose
Padding
(LR Save Area |
‘ 7
Low Address l[Back Chain] -
GPR1

{ Stack Pointer]

ATR-CLASSIC-FLOAT
General-Purpose Register Save Area (with floating-point registers available)

If a function is to change the value in any nonvolatile general-purpose register rn, it shall first save
the value of 17 in the general register save area, in a word located 4 x (32 - n) bytes before the
low-addressed end of the Floating-Point Register Save Area, as shown in Figure 3-13.

CR Save Area
CR Save-Register Save Area

If a function changes the value in any nonvolatile field of the condition register, it shall first save the

32

Chapter 3. Low Level System Information

value in all the nonvolatile fields of the condition register in the CR Save Area, which is the word
below the low address end of the general register save area, as shown in Figure 3-15.

Figure 3-15. CR Save Area

High Address Address

Caller'
of Caller's > Back Chain — S?aci:{r s
Back Chain 4 (39._p) J ! l‘-\ Frame
Start of GPR ™" General-Purpose
Save Area » Register Save Area
H CR Save Area | Current
Special Purpose Stack
Padding Frame
| (LR Save Area |
Low Address L{ Back Chain | »w
GPR1
{ Stack Pointer |
ATR-CLASSIC-FLOAT
Figure 3-16. CR Save Area With Floating-Point Save Area
High A Address .
igh Address of Caller's > Back Chain e gf;iir s
Back Chain g (32 -n) I ‘I‘-\ Frame
Start of FPRbytes F!oating—Point
Save Area » Register Save Area
-4 x(32-n) G 1Pu
b eneral-Purpose
S‘éir‘f;g?e? ytes » Register Save Area
H CR Save Area | }. g;larcrﬁ nt
Special Purpose Frame
Padding)
 / [LR Save Area |
Low Address l[Back Chain] w

GPR1
{ Stack Pointer]

Figure 3-16 shows the location of the CR save area when a floating-point save area is present.

33

Chapter 3. Low Level System Information

Category Specific Save-Register Save Area

ATR-VECTOR
VRSAVE Register Save Area

Functions must ensure that the appropriate bits in the VRSAVE register are set for any vector
registers they use. A function that changes the value of the VRSAVE register shall save the original
value of VRSAVE into the VRSAVE save area. If the CR save area is present, the VRSAVE save area
is located in the word below the CR save area. Otherwise, the VRSAVE save area is located in the
word below the low address end of the general register save area. Both options are shown in Figure
3-17.

34

Chapter 3. Low Level System Information

ATR-VECTOR
Figure 3-17. VRSAVE and Vector Register Save Areas

: Address :
High Address of Caller's L Back Chain g?sl“l:t;,{r s
Back Chain 58 x (32 - n) . Iﬁl Frame
ytes Floating-Point
Start of FPR .
Save Area ==) Register Save Area
byt General-Purpose
ngr‘feog&I;R il Register Save Area
-4 bytes 4
Optional -4 bytes "|Optional CR Save Word
= VRSAVE Save Word
(@uad Word Boundary) e Fadding b
—
-16 bytes vr(31)
16-bytes
s Current
Vector Register Stack
-16 x (32 - n) Save Area Frame
bytes -
vr{n+1)
16-bytes
vr(n)
Start of VR byt
Save Area
(Quad Word Boundary) Special Parpose
Padding
| J (LR Save Area |
Low Address L[e] ‘_J
GPR1
{ Stack Pointer |

35

Chapter 3. Low Level System Information

Category-Specific Register Save Areas

ATR-VECTOR
Vector Register Save Area

If a function changes the value in any nonvolatile vector register vrn, it shall first save the value of
vrn in the Vector Register Save Area, in a quadword located 16 x (32 - n) bytes before the
low-addressed end of the VRSAVE save area (plus any required padding), as shown in Figure 3-17.
The Vector Register Save Area shall have quadword alignment.

Additional Category Specific Register Save Areas

ATR-SPE
SPE 64-bit General-Purpose Register Save Area

If a function changes the value in the upper word of any nonvolatile general-purpose register rn, it
shall first save the value of rn in the 64-bit general-purpose register save area, in a doubleword
located 8 x (32 - n) bytes before the low-addressed end of the CR save area (plus any required
padding) if the CR Save Area is present. Otherwise, it is located in a doubleword 8 x (32 - n) bytes
before the low-address end of the General-Purpose Register Save Area (plus any required padding).
The 64-bit General-Purpose Save Area shall have quadword alignment. While not technically
necessary, quadword alignment is required for congruence with AltiVec and VMX technology.

36

Chapter 3. Low Level System Information

Figure 3-18. SPE 64-bit General-Purpose Register Save Area

Start of 64-bit
General Purpose

Save Area ==
(Quad Word Boundary)
\J
Low Address

rin + 1)
8-bytes

r(n)

8-bytes

Special Purpose
Padding

LR Save Area

Back Chain

GPR1

e

Stack Pointer

Hish A Address '
igh Address of Caller’s . Back Chain - g?;}:ele{r s
Back Chain 452 n]{ , Frame
ytes General-Purpose
Siéz:“l;eoiilzR Register Save Area
-4 bytes -{.-
ional CR Save Word
Alignment Padding to
(Double Word Boundary) Quadword Boundary
-8 bytes{ r(31)
! 8-bytes
-8 x(32-n) Current
bytes - Stack
Frame

Note: The purpose of providing both 32-bit and 64-bit general register save areas is to reduce
the stack usage for routines that use only the lower word of some nonvolatile registers, and both
the lower and upper word of some other nonvolatile registers. A compiler may choose to save
and restore all 64 bits of each modified nonvolatile general-purpose register, as long as the
debugging information reflects this choice.

37

Chapter 3. Low Level System Information

Figure 3-19. Parameter Save Area and Local Variable Space

: Address :
High Address of Callor's . Back Chain g&l}:ir)
Back Chain | | Frame
Lowest Address R
Register Save Area or
optional CR Save Area

Alignment Padding to
Quadword Boundary

Current
Stack

| Local Variable Space | Frame

| Parameter Save Area |

 / (LR Save Area]
Low Address ll Back Chain] w
GPR1
(Stack Pointer |

Parameter Save Area
Parameter Save Area

The Parameter Save Area shall be allocated by the caller, and shall be large enough to contain the
parameters needed by the caller. The calling function cannot expect that the contents of this save
area are valid when returning from the callee. Refer to Figure 3-19 for information on the location
of this space.

Local Variable Space
Local Variable Space

The Local Variable Space is used for allocation of local variables. If the Parameter Save Area is in
use, the Local Variable Space is located immediately above it, at a higher address, otherwise it is
located immediately above the LR Save word. There is no restriction on the size of this area. Refer
to Figure 3-19 for information on the location of this space.

3.2.3. Parameter Passing

For the Power Architecture, it is more efficient to pass arguments to functions in registers, rather than
through memory. For the Power Architecture, the following parameters can be passed in registers.

« Up to eight arguments can be passed in general-purpose registers r3 through r10

ATR-SPE

« Up to eight 64-bit doubleword vector arguments are passed in general-purpose registers.

38

Chapter 3. Low Level System Information

ATR-CLASSIC-FLOAT

+ Up to eight floating-point arguments can be passed in floating-point registers f1 through f8.

ATR-CLASSIC-FLOAT && ATR-DFP

« Up to eight single-precision or double-precision decimal floating-point arguments can be passed in
floating-point registers f1 through f8.

ATR-CLASSIC-FLOAT && ATR-DFP

« Up to three quad-precision decimal floating-point arguments can be passed in even-odd floating-point
register pairs f2 through 7.

ATR-VECTOR

« Up to 12 vector parameters can be passed in v2 through v13.

If fewer arguments are needed, then the unused registers defined previously will contain undefined values
on entry to the called function.

If there are more arguments than registers, then a function must provide space for the arguments in its
stack frame. When this happens, only the minimum storage needed to contain the extra arguments needs
to be allocated in the stack frame.

The following algorithm describes where arguments are passed for the C language. In this algorithm,
arguments are assumed to be ordered from left (first argument) to right. The actual order of evaluation
for arguments is unspecified.

gr contains the number of the next available general-purpose register.

ATR-CLASSIC-FLOAT

fr contains the number of the next available floating-point register.

39

Chapter 3. Low Level System Information

ATR-VECTOR

vr contains the number of the next available vector register.

3.2.3.1. Parameter Passing Register Selection Algorithm

Note: The following types refer to the type of the argument as declared by the function prototype. The
argument values will be converted (if necessary) to the types of the prototype arguments before
passing them to the called function.

If a prototype is not present, or it is a variable argument prototype and the argument is after the
ellipsis, the type refers to the type of the data objects being passed to the called function.

« INITIALIZE: If the function return type requires a storage buffer, set gr = 4, else set gr = 3.

ATR-CLASSIC-FLOAT
Setfr=1

ATR-VECTOR

Setvr=2

Set starg to the address of parameter word 1.

« SCAN: If there are no more arguments, terminate. Otherwise, select one of the following depending
on the type of the next argument:

- SINGLE_GP:

A single integer no more than 32 bits

ATR-SOFT-FLOAT

- A single-precision floating-point value if prototype is present

ATR-SPE

+ A 64-bit vector if the called function is not a variable-argument function

- A pointer to a data object

40

Chapter 3. Low Level System Information

- A struct or union that shall be treated as a pointer to the data object, or to a copy of the data
object when necessary to enforce call-by-value semantics. Only if the caller can ascertain that the
data object is constant can it pass a pointer to the data object itself.

ATR-SOFT-FLOAT & & ATR-DFP

- A single-precision decimal float

If gr > 10, go to OTHER. Otherwise, load the argument value into general-purpose register gr, set
gr=gr + 1, and go to SCAN. Values shorter than 32 bits are sign-extended or zero-extended,
depending on whether they are signed or unsigned.

- DUAL_GP:
- A 64-bit integer

ATR-SOFT-FLOAT

+ A double-precision floating-point value

ATR-SPE

« A 64-bit vector being passed to a variable-argument function

ATR-PASS-COMPLEX-IN-GPRS

- A complex single-precision float

ATR-SOFT-FLOAT & & ATR-DFP

A double-precision decimal float

If gr > 9, go to OTHER. If gr is even, set gr = gr + 1. Load the lower-addressed word of the
argument into gr and the higher-addressed word into gr + 1, set gr = gr + 2, and go to SCAN.

- QUAD_GP:

41

Chapter 3. Low Level System Information

ATR-PASS-COMPLEX-IN-GPRS

- A complex double-precision float

ATR-SOFT-FLOAT & & ATR-LONG-DOUBLE-IBM

+ A long double type of IBM AIX 128-bit Long Double format when no floating-point unit is
present.

ATR-SOFT-FLOAT & & ATR-DFP

A quad-precision decimal float

If gr > 7, go to OTHER. Load the words of the argument, in memory-address order, into gr, gr + 1,
gr+ 2 and gr + 3, set gr = gr + 4, and go to SCAN.

ATR-LONG-DOUBLE-IBM

- EIGHT_GP:

ATR-PASS-COMPLEX-IN-GPRS
+ A complex long double type of IBM AIX 128-bit Long Double format.

If gr > 3, go to OTHER. Load the words of the argument, in memory-address order, into gr through
gr+ 7, set gr =gr + 8, and go to SCAN.

ATR-CLASSIC-FLOAT

- SINGLE_FP:

- A single-precision floating-point value or a double-precision floating-point value

ATR-DFP

A single-precision decimal floating-point value or a double-precision decimal floating-point value

42

Chapter 3. Low Level System Information

if fr > 8, go to OTHER. Otherwise load the argument into register fr, set fr to fr 4+ 1, and go to
SCAN

ATR-LONG-DOUBLE-IBM Il ATR-DFP

- DOUBLE_FP:

ATR-LONG-DOUBLE-IBM
+ An extended-precision floating-point value of IBM AIX 128-bit Long Double format

ATR-DFP

+ A quad-precision decimal floating-point value

If fr > 7, go to OTHER.

ATR-DFP

If argument is quad-precision decimal floating-point value and fr > 6, go to OTHER.

ATR-DFP

If argument is quad-precision decimal floating-point value and is fr is odd, set (increment) fr to fr +
1, load the argument into fr [even] and fr + 1 [odd], set fr to fr + 2, and go to SCAN.

Otherwise load the argument into fr and fr + 1, set fr to fr 4+ 2, and go to SCAN.

ATR-VECTOR

- SINGLE_VR:

« A 128-bit vector type, unless being passed as one of the variable arguments to a
variable-argument function.

if vr > 13, go to OTHER. Otherwise, load the argument on register vr, set vr to vr + 1, and go to
SCAN

43

Chapter 3. Low Level System Information

- OTHER:

- Arguments not otherwise handled are passed in the parameter save area of the caller’s stack
frame. Most of the types handled in SINGLE_GP, as defined previously, are considered to have
4-byte size and alignment, with simple integer types shorter than 32 bits sign- or zero-extended to
32 bits. Long long arguments are considered to have 8-byte size and alignment. The same 8-byte
arguments that must go in aligned pairs or registers are 8-byte aligned on the stack.

ATR-PASS-COMPLEX-IN-GPRS

Complex single-precision float arguments are considered to have 8-byte size and alignment.

ATR-LONG-DOUBLE-IBM & & ATR-CLASSIC-FLOAT

A long double type of IBM AIX 128-bit Long Double format is considered to have 8-byte
alignment.

ATR-DFP & & ATR-CLASSIC-FLOAT

Decimal floating-point data types _Decimal128, _Decimal64, and _Decimal32 are considered to
have 8-byte, 8-byte, and 4-byte alignment respectively.

ATR-SPE

64-bit vector arguments are considered to have 8-byte size and alignment.

Round starg up to a multiple of the alignment requirement of the argument and copy the
argument byte-for-byte, beginning with its lowest addressed byte, into starg, ..., starg + size - 1.
Set starg to starg + size, and go to SCAN.

Types handled in QUAD_GP, as defined previously, are only 4-byte aligned when passed on the
stack.

ATR-LONG-DOUBLE-IBM

Complex long double values of IBM AIX 128-bit Long Double format are only 4-byte aligned
when passed on the stack.

44

Chapter 3. Low Level System Information

ATR-CLASSIC-FLOAT && ATR-DFP || ATR-LONG-DOUBLE-IBM

If fr > 7 and the type is DOUBLE_FP, then set fr = 9 (to prevent subsequent SINGLE_FPs from
being placed in registers after DOUBLE_FP arguments that would no longer fit in the registers).

If gr > 9 and the type is DUAL_GP, or gr > 7 and the type is QUAD_GP, or gr > 3 and the type
is EIGHT_GP, then set gr = 11 (to prevent subsequent SINGLE_GPs from being placed in
registers after DUAL_GP, QUAD_GP, or EIGHT_GP arguments that would no longer fit in the

registers).

3.2.3.2. Parameter Passing Examples

The following section provides some examples using the algorithm described in Section 3.2.3.1.

ATR-CLASSIC-FLOAT & & ATR-LONG-DOUBLE-IBM |l ATR-LONG-DOUBLE-IS-DOUBLE

Figure 3-20. Parameter Passing Example

typedef struct {
int aj
double dd;
} sparm;
sparm s, t;
int c, d, e;
long double 1d;
double ff, gg, hh;

x = func(c, f£f, d, 1d, s, gg, t, e,

hh) ;

45

Chapter 3. Low Level System Information

ATR-CLASSIC-FLOAT & & ATR-LONG-DOUBLE-IBM
Table 3-25. Parameter Passing Using IBM AIX 128-bit Long Double

Parameter Register Byte Offset In Parameter Save Area
c r3 (not stored in parameter save area)

ff f1 (not stored)

d r4 (not stored)

1d 2, f3 (not stored)

ptrtos r5 (not stored)

gg f4 (not stored)

ptrtot r6 (not stored)

e r7 (not stored)

hh 5 (not stored)

ATR-SOFT-FLOAT && ATR-LONG-DOUBLE-IBM

Table 3-26. Parameter Passing Using IBM AIX 128-bit Long Double and Soft-Float

Parameter Register Byte Offset In Parameter Save Area
c r3 (not stored in parameter save area)

ff r5,r6 (not stored)

d 17 (not stored)

1d (none) 08-23 (stored in parameter save area)
ptrtos (none) 24-27 (stored)

gg (none) 32-39 (stored)

ptrtot (none) 40-43 (stored)

e (none) 43-46 (stored)

hh (none) 47-54 (stored)

46

Chapter 3. Low Level System Information

ATR-CLASSIC-FLOAT && ATR-LONG-DOUBLE-IS-DOUBLE
Table 3-27. Parameter Passing Using long double is double

Parameter Register Byte Offset In Parameter Save Area

c r3 (not stored in parameter save area)
4 (not stored)

1d f1 (not stored)

ptrtos 5 (not stored)

ff 2 (not stored)

gg 3 (not stored)

ptrtot r6 (not stored)

e r7 (not stored)

hh f4 (not stored)

ATR-SOFT-FLOAT & & ATR-LONG-DOUBLE-IS-DOUBLE
Table 3-28. Parameter Passing Using long double is double and Soft-Float

Parameter Register Byte Offset In Parameter Save Area

c r3 (not stored in parameter save area)
ff r5,r6 (not stored)
d 17 (not stored)
1d 19,r10 (not stored)
ptrtos (none) 08-11 (stored in parameter save area)
gg (none) 16-23 (stored)
ptrtot (none) 24-27 (stored)
e (none) 28-31 (stored)
hh (none) 32-39 (stored)
ATR-VECTOR

Figure 3-21. Vector Parameter Passing Example

typedef struct {

int aj
double dd;
} sparm;
sparm s, t;
int Cc;

vector int wva, vb;

47

Chapter 3. Low Level System Information

long double 1d;
double ff, gg, hh;
x = func(c, ff, va, 1d, s, gg, t, vb, hh);

ATR-VECTOR
Table 3-29. Parameter Passing of Vector Data Types

Parameter Register Byte Offset In Parameter Save Area

c 3 (not stored in parameter save area)
ff f1 (not stored)
va v2 (not stored)
1d 2, f3 (not stored)
ptrtos r4 (not stored)
gg f4 (not stored)
ptrtot r5 (not stored)
vb v3 (not stored)
hh 5 (not stored)
ATR-SPE

Figure 3-22. SPE Parameter Passing Example

typedef struct {
int a;
double dd;
} sparm;
sparm S;
int c;
__ev64_opaque__ va, vb;
float ff£f;
double gg;
x = func(c, ff, wva, gg, vb, s);

48

Chapter 3. Low Level System Information

ATR-SPE

Table 3-30. Parameter Passing of SPE Data Types

Parameter Register Byte Offset In Parameter Save Area
c r3 (not stored in parameter save area)

ff 4 (not stored)

va r5 (not stored)

gg 17,18 (not stored)

vb 9 (not stored)

ptrtos r10 (not stored)

ATR-DFP

Figure 3-23. Decimal Floating-Point Parameter Passing Example

typedef struct {
_Decimal32 df;

_Decimaloc4d

dd;

_Decimall28 dl;

} sparm;
sparm s,
_Decimal32
_Decimalo4d
_Decimall28

x = func(d128,

t;

d32;

ded, e64;
dl28, el128;

de4,

d32, s, t, dl28, e64, el1l28);

ATR-CLASSIC-FLOAT && ATR-DFP

Table 3-31. Decimal Floating-Point Parameter Passing on Classic Power Architecture (with FPU)

Parameter Register Byte Offset In Parameter Save Area
d128 f2-f3 (not stored in parameter save area)

do4 f4 (not stored)

d32 f5 (not stored)

ptrtos r3 (not stored)

ptrtot r4 (not stored)

eb4 f6 (not stored)

el28 (none) 08-23 (stored in parameter save area)

49

Chapter 3. Low Level System Information

ATR-SOFT-FLOAT & & ATR-DFP
Table 3-32. Decimal Floating-Point Parameter Passing with Soft-Float (without FPU)

Parameter Register Byte Offset In Parameter Save Area

d128 13-16 (not stored in parameter save area)
do4 r7-r8 (not stored)

d32 9 (not stored)

ptrtos rl0 (not stored)

ptrtot (none) 08-11 (stored in parameter save area)
e64 (none) 12-19 (stored)

el28 (none) 20-35 (stored)

3.2.4. Variable Argument Lists

C programs that are intended to be portable across different compilers and architectures must use the
header file <stdarg.h> to deal with variable argument lists. This header file contains a set of macro
definitions that define how to step through an argument list. The implementation of this header file may
vary across different architectures, but the interface is the same.

C programs that do not use this variable argument list header file, and assume that all the arguments are
passed on the stack in increasing order on the stack are not portable, especially on architectures that pass
some of the arguments in registers. The Power Architecture is one of the architectures that passes some
of the arguments in registers.

ATR-CLASSIC-FLOAT

CR bit 6 must be set by a variable argument list function caller that passes any arguments in
floating-point registers. The recommended instruction to achieve this is: creqv 6, 6, 6. It is
recommended that CR bit 6 be cleared by variable argument list function callers that do not pass any
arguments in floating-point registers, using the instruction crxor 6, 6, 6.

The parameter list may be zero length and is only allocated when parameters are spilled.

ATR-SPE

For variable argument functions, 64-bit vectors (both before and after the ellipsis) are passed in the low
words of two consecutive registers, in the same manner as long long variables.

50

Chapter 3. Low Level System Information

3.2.5. Return Values

ATR-CLASSIC-FLOAT

Functions that return float or double values shall place the result in register f1. The float values will be
rounded to single-precision.

ATR-CLASSIC-FLOAT && ATR-DFP

Functions that return single-precision or double-precision decimal floating-point values shall return the
result in register f1. Functions that return quad-precision decimal floating-point values shall return the
result in the register pair 2 and 3.

ATR-CLASSIC-FLOAT & & ATR-LONG-DOUBLE-IBM

Functions that return long double values shall place the result in registers f1 and f2.

ATR-SOFT-FLOAT

Functions shall return single-precision float values in r3, and double-precision values shall be returned
with the low addressed word in r3 and the higher in r4.

ATR-SOFT-FLOAT & & ATR-DFP

Functions shall return single-precision decimal floating-point values in 3, double-precision decimal float
values in r3 and r4, and quad-precision decimal floating-point values in r3 through r6.

51

Chapter 3. Low Level System Information

ATR-SOFT-FLOAT && ATR-LONG-DOUBLE-IBM

Functions shall return long double values in r3 through r6.

ATR-SPE

Functions shall return values of 64-bit vector types in r3.

ATR-VECTOR

When the Vector facility is supported, functions shall return vector data type values in v2.

Functions that return values of the following list of types shall place the result in register r3 as signed or
unsigned integers as appropriate, sign extended or zero extended to 32 bits where necessary:

» char

+ enum

+ short

+ int

+ long

« pointer to any type.
« Bool

Aggregates or unions of any length will be returned in a storage buffer allocated by the caller. The caller
will pass the address of this buffer as a hidden first argument in r3, causing the first explicit argument to
be passed in r4. This hidden argument is treated as a normal formal parameter, and corresponds to the
first doubleword of the parameter save area.

Functions that return values of type long long and unsigned long long shall place the result in registers 13
and r4. The lower addressed word shall be placed in register r3, and the higher addressed word shall be in
register r4.

ATR-PASS-COMPLEX-IN-GPRS

Functions that return values of type _Complex float shall place the results in registers r3 and r4. The
lower addressed word shall be placed in r3; the higher addressed word shall be in register 4.

52

Chapter 3. Low Level System Information

ATR-PASS-COMPLEX-IN-GPRS

Functions that return values of type _Complex double shall place the results in registers r3 through r6,
from lowest to highest addressed words.

ATR-PASS-COMPLEX-IN-GPRS & & ATR-LONG-DOUBLE-IBM

Functions that return values of type _Complex long double shall place the result in registers r3 through
r10, from lowest to highest addressed words.

3.3. Coding Examples

The following ISO C coding examples are provided as illustrations of how operations may be done, not
how they shall be done, for calling functions, accessing static data, and transferring control from one part
of a program to another. They are shown as code fragments with simplifications to explain addressing
modes, not necessarily show the optimal code sequences or compiler output. The small data area is not
used in any of them.

The previous sections explicitly specify what a program, operating system, and processor may and may
not assume and are the definitive reference to be used.

In these examples, absolute code and position-independent code are referenced.

When instructions hold absolute addresses, a program must be loaded at a specific virtual address in
order to permit the absolute code model to work.

When instructions hold relative addresses, a program can be loaded at various positions in virtual
memory and is referred to as position-independent code model.

3.3.2. Code Model Overview

A shared object file is mapped with virtual addresses to avoid conflicts with other segments in the
process. Because of this mapping, shared objects use position-independent code, which means that the
instructions do not contain any absolute addresses. Avoiding the use of absolute addresses allows shared
objects to be loaded into different virtual address spaces without code modification, which can allow
multiple processes to share the same text segment for a shared object file.

There are two techniques used to deal with position-independent code.

« First, branch instructions use an offset to the current EA (Effective Address) or use registers to hold
addresses. The Power Architecture provides both EA-relative branch instructions and branch
instructions that use registers. In both cases, absolute addressing is not required.

53

Chapter 3. Low Level System Information

« Second, when absolute addressing is required, the value can be computed with a Global Offset Table
(GOT), which holds the information for address computation. Position-independent executables or
shared objects have a GOT in the data segment that holds addresses. When the system creates a
memory image from the file, the GOT entries are updated to reflect the absolute virtual addresses that
were assigned for the process. These data segments are private, while the text segments are shared.
The Power Architecture will generate a more efficient GOT if it is less than 65,536 bytes. A larger
GOT will require more general code in order to access all of its entries.

The GOT size gives programs two choices — more efficient code with a size restriction, or less efficient
code without size restrictions. In the following sections, the term small model position-independent code
refers to the use of efficient code with a smaller GOT (no more than 65,536 bytes), and the term large
model position-independent code refers to the use of less efficient code without any restriction on the
size of the GOT.

3.3.3. Function Prologue and Epilogue

A function’s prologue and epilogue is detailed in this section.
3.3.3.1. The Purpose of a Function’s Prologue

+ Create a stack frame when required.
« Save any nonvolatile registers that are used by the function.

+ Save any limited-access bits that are used by the function, per the rules described earlier.

3.3.3.2. The Purpose of a Function’s Epilogue

+ Restore all registers and limited-access bits that were saved by the function’s prologue.
« Restore the last stack frame.

« Return to the caller.

3.3.3.3. Rules for Prologue and Epilogue Sequences

Set function prologue and function epilogue code sequences are not imposed by this ABI. There are
several rules that must be adhered to in order to ensure reliable and consistent call chain backtracing.

+ Before a function calls any other function, it shall establish its own stack frame, whose size shall be a
multiple of 16 bytes, and shall save the link register at the time of entry in the LR save area of its
caller’s stack frame.

+ The calling sequence does not restrict how languages leverage the local variable space of the stack
frame, and there is no restriction on the size of this section.

« The parameter save area shall be allocated by the caller, and shall be large enough to contain the
parameters needed by the caller. Its contents are not saved across function calls.

54

Chapter 3. Low Level System Information

« Ininstances where a function’s prologue creates a stack frame, the backchain word of the stack frame
shall be updated atomically with the value of the stack pointer (r1). This task can be done by using one
of the following Store Word with Update instructions:

« Store Word with Update instruction with relevant negative displacement for stack frames that are
smaller than 32 KB.

« Store Word with Update Indexed instruction where the two’s complement size of the stack frame has
been computed, using addis and addi or ori instructions, and then loaded into a volatile register
for stack frames that are 32 KB or greater.

« The deallocation of a function’s stack frame must be an atomic operation. This task can be
accomplished by one of the following methods given below:

- Increment the stack pointer by the identical value that it was originally decremented in the prologue
when the stack frame was created.

- Load the stack pointer (r1) with the value in the backchain word in the stack frame.

- If any nonvolatile registers are to be used by the function the contents of the register must be saved
into a register save area. See Section 3.2.2.2 for information on all of the optional register save areas.

Saving and/or restoring nonvolatile registers used by the function can be accomplished using in-line
code. Alternatively one of the system subroutines described in Section 3.3.4 may offer a more efficient
alternative to in-line code, especially in cases where there are many registers to be saved or restored.

Unlike some other processors that implement the Power Architecture embedded processors may support
load and store multiple Power Architecture instructions in little-endian mode. On big-endian
implementations they may or may not be slower than the register-at-a-time saves, but reduce the
instruction footprint.

Position independent functions which make external data references will need to load a nonvolatile
register with a pointer to a Global Offset Table as show in Figure 3-26. In cases where external data
references are only made from within conditional code the loading of a Global Offset Table pointer can
be delayed until it is needed.

3.3.4. Register Saving and Restoring Functions

This section describes functions that can be used to save and restore contents of nonvolatile registers.
The use of these routines, rather than performing these saves and restores inline in the prologue and
epilogue of functions, can help reduce code footprint.

This section details register saving and restoring functions. The calling conventions of these functions
are not standard and the executables or shared objects that use these functions must statically link them.
The specific calling convention for each of these functions is described in Section 6.1.2.

ATR-SPE && ATR-SOFT-FLOAT

The use of a merged register file removes the need for distinct routines for saving and restoring
floating-point registers. However, in order to conserve stack space, this ABI describes several new

55

Chapter 3. Low Level System Information

routines to allow the compiler to use the minimum stack space for holding copies of nonvolatile registers.
See Section 3.3.4.1 for information on the routines.

ATR-SPE

For situations where stack space is not at a premium, the compiler can elect to only use the 64-bit save
and restore functions for functions that require some use of the upper halves of the registers, and
traditional 32-bit save and restore functions for code that uses only classic instructions.

There are several cases to consider with respect to saving/restoring nonvolatile registers for a function:

« No nonvolatile registers need saving or restoring.

« Only 32-bit nonvolatile registers need to be saved or restored. In this case, the classic (32-bit) save and
restore functions, or the stmw and 1mw instructions, can be used.

ATR-SPE

+ Only 64-bit nonvolatile registers need to be saved or restored. In this case, 64-bit versions of the
classic save and restore functions can be used. There is no equivalent to stmw/1mw for both halves of a
64-bit register.

« A mixture of 32-bit and 64-bit nonvolatile registers need saving or restoring. To minimize complexity,
the 32-bit nonvolatile registers shall be contiguous and at the upper end of the registers (rN - r31). This
also allows the stmw and 1mw instructions to still be used, if desired. The 64-bit nonvolatile registers
shall also be contiguous (rM - r(N - 1)). The registers are saved or restored by calling both a 32-bit
save and restore function and a 64-bit save and restore function.

Saving and restoring functions also have variants (_g for register save routines, _x and _¢ for register
restore routines) that bundle some common prologue and epilogue operations to reduce overhead and
code footprint by a few instructions. These are described in more detail in the following paragraphs.

The 32-bit save and restore functions restore consecutive 32-bit registers from register m through register
31.

ATR-SPE

The simple 64-bit save and restore functions restore consecutive 64-bit registers from register m through
register 31. The more complex (CTR-based) 64-bit save and restore functions save and restore
consecutive 64-bit registers from register m through register n, and use the value N - m + 1 in the CTR
register to determine how many registers to save.

56

Chapter 3. Low Level System Information

Higher-numbered registers are saved at higher addresses within a save area.

All of the 32-bit save and restore functions in this section expect the address of the backchain word to be
contained in r11. The back chain word is the next word after the end of the 32-bit general register save
area. r11 is not modified by these functions.

ATR-SPE
The value held in r11 for the 64-bit save and restore functions varies on the type of function.

+ All the non-CTR 64-bit save and restore functions described in this section expect r11 to contain the
address of the backchain word, adjusted by subtracting 144. The adjustment by 144 allows the
immediate form of the 64-bit load/store instructions to be used (they have an unsigned immediate).

« The CTR-based 64-bit save and restore functions described in this section expect the CTR to contain
the number of registers to save (1:18). Register r11 should be calculated by taking the 8-byte aligned
address pointing to the doubleword beyond the 64-bit general register save area, adjusting it by
subtracting 8 times the last (highest) 64-bit nonvolatile register number to be saved or restored and
adding 8 x 13 = 104. These two adjustments allow positive offsets, and adjust so that the last register
saved is placed directly below the 32-bit general register save area. These two adjustments allow a
single routine, with fixed offsets, to be used across all potential cases. The doubleword beyond the
64-bit general-purpose register save area could be the low word of the 32-bit general-purpose register
save area, the CR save word, or a pad word, depending on the number of 32-bit registers saved and the
presence or absence of a CR save word.

ATR-SPE
These rules are summarized in the following table.

Table 3-33. SPE Save And Restore Rules

Function Type r11 Contents
save & restore 32-bit values (rM - r31) address of backchain
save & restore 64-bit values (rM - r31) address of backchain (or pad word below

CR save word if CR is saved) - 144

save & restore 64-bit values (rM - rN, where N != 32) address of low end of 32-bit save area/CR
save word/padding, adjusted by subtracting
(8 x N) and adding 104.

3.3.4.1. Details about the Functions

Each function described in this section is a family of 18 functions with identical behavior except for the
number and kind of registers affected.

57

Chapter 3. Low Level System Information

ATR-SPE

The function names use the notation [32/64] to designate the use of a 32 for the 32-bit general-purpose
register functions and a 64 for the 64-bit general-purpose register functions. The suffix _m; designates
the portion of the name that would be replaced by the first register to be saved. That is, to save registers
18 through 31, call _save32gpr_18().

There are two families of register saving functions:

« The following simple register saving functions save the indicated registers and return

_savegpr_m()

ATR-CLASSIC-FLOAT

_savefpr_m()

ATR-SPE

_save32gpr_m()
_savebdgpr_m() and _save6dgpr_ctr_m()

+ The following GOT register saving functions do not return directly:

_savegpr_m_g()

ATR-CLASSIC-FLOAT

_savefpr_m_g()

ATR-SPE

_save32gpr_m_g ()
_saveb4gpr_m_g () and _savebdgpr_ctr_m_g()

Instead these functions branch to _GLOBAL_OFFSET_TABLE_-4, relying on a b1rl instruction at that
address to return to the caller of the save function with the address of a Global Offset Table in the link
register.

There are three families of register restoring functions.

58

Chapter 3. Low Level System Information

+ The following simple register restoring functions restore the indicated registers and return:

_restgpr_m()

ATR-CLASSIC-FLOAT

_restfpr_m()

ATR-SPE

_rest32gpr_m() and _rest32gpr_m_t ()
_rest6d4gpr_m() and _rest6dgpr_ctr_m()

+ The following exit functions restore the indicated registers and, relying on the registers being restored
to be adjacent to the backchain word, restore the link register from the LR save word, remove the stack
frame, and return through the link register:

_restgpr_m_x()

ATR-CLASSIC-FLOAT

_restfpr_m x()

ATR-SPE

_rest32gpr_m_x()
_rest6dgpr_m_x()

+ The following tail functions restore the registers, place the LR save word into r0, remove the stack
frame, and return to their caller:

_restgpr_m_t ()

ATR-CLASSIC-FLOAT

_restfpr_m_t ()

59

Chapter 3. Low Level System Information

_rest64gpr_m_t ()

ATR-SPE

The caller can thus implement a tail call by moving r0 into the link register and branching to the tail

function. The tail function then detects the call from the function above the one that made the tail call
and, when done, returns directly to it.

Note: There are no functions _rest64gpr_ctr_m_x () Of _reset64gpr_ctr_m_t (), because the

ATR-SPE

backchain word is not directly above the location of the 64-bit save area in these cases. In this case,

the 64-bit registers shall be restored first, followed by a call to _rest32gpr_m_x () or
_rest32gpr_m_t ().

Note: If a CR save word is used, even if only 64-bit registers are saved, _rest64gpr_m_x () and

rest64gpr_m_t () cannot be used, because the backchain word is not directly above the end of the

64-bit save area.

The following assembly code shows an example of an implementation.

_save32gpr_1l4:
_save32gpr_15:

_save32gpr_30:
_save32gpr_31:

_savebdgpr_14:
_savebdgpr_15:

_savebdgpr_30:
_savebd4gpr_31:

_savebdgpr_ctr_14:

_savebdgpr_ctr_15:

_savebdgpr_ctr_30:

_savebdgpr_ctr_31:

ATR-SPE

stw rl14,-72(rll)
stw rl5,-68(rll)

stw r30,-8(rll)
stw r31,-4(rll)
blr

evstdd rl14,0(rll)
evstdd rl5,8(rll)

evstdd r30,128(rll)
evstdd r31,136(rll)
blr

evstdd rl14,0(rll)
bdz _save64gpr_ctr_done
evstdd rl1l5,8(rll)
bdz _save64gpr_ctr_done

evstdd r30,128(rll)
bdz _saveb64gpr_ctr_done
evstdd r31,144(rll)

60

_saveb4dgpr_ctr_done:

_rest32gpr_14:
_rest32gpr_15:

_rest32gpr_30:
_rest32gpr_31:

_rest64gpr_14:
_rest64gpr_15:

_rest64gpr_30:
_rest64gpr_31:

_rest64gpr_ctr_14:
_rest64gpr_ctr_15:

_rest64gpr_ctr_30:

_rest64gpr_ctr_31:

_rest64gpr_ctr_done:

blr

lwz rl4,-72(rll)
lwz rl5,-68(rll)

lwz r30,-8(rll)
1wz r31,-4(rll)
blr

evldd rl14,0(rll)
evldd rl5,8(rll)

evldd r30,128(rll)
evldd r31,136(rll)
blr

evldd rl14,0(rll)
bdz _rest64gpr_ctr_done
evldd rl5,8(rll)
bdz _rest64gpr_ctr_done

evldd r30,128(rll)

bdz _rest64gpr_ctr_done
evldd r31,136(rll)

blr

Chapter 3. Low Level System Information

The GOT forms of the save routines (with a suffix of _g) all replace the b1r with b
_GLOBAL_OFFSET_TABLE_ - 4.

The exit forms of the restore routines (with a suffix of _x) perform the following tasks in place of the

blr:

_rest[fglpr_m x

ATR-CLASSIC-FLOAT

replaces the blr with

lwz r0,4(rll)
mr rl,rll
mtlr rO0

blr

61

Chapter 3. Low Level System Information

ATR-SPE

_rest32gpr_m_x replaces the blr with lwz r0,4(rll)
mr rl,rll
mtlr r0
blr
_rest64gpr_m_x replaces the blr with lwz r0,148(rll)
addi rl,rl11,144
mtlr rO0
blr

The tail functions (with a suffix of _¢) are similar to the exit functions, except they skip the mt 1r
instruction.

ATR-SPE

Note: The CTR-based 64-bit restore functions cannot perform the exit and tail optimizations as
implemented here, because the address of the backchain word and the return address are not at a
fixed offset from r11.

Note: For slightly higher performance in the restore function variants, the 1wz of r0 and the restore of
r31 could be reordered (but the label for _rest [32/641gpr_31+ () shall now point to the 1wz of r0,
not the load of r31).

ATR-SPE

The following assembly source code provides and an example restore function variant using
_rest32gpr_m_x().

_rest32gpr_30_x: lwz r30,-8(rll)

_rest32gpr_31_x: lwz r0,4(rll)
lwz r31,-4(rll)
mtlr r0
mr rl,rll # Change to addi rl,rll,144

for _restédgprx blr

62

Chapter 3. Low Level System Information

ATR-SPE

The following figure shows sample prologue and epilogue code with full saves of all the nonvolatile
general-purpose registers (r14 through 25 as 64-bit, r26 through r31 as 32-bit) and a stack frame size of
less than 32 KB. The variable len refers to the size of the stack frame. The example assumes that the
function does not alter the nonvolatile fields of the CR register and does no dynamic stack allocation.

Note: The following code assumes that the size of the executable or shared object in which the code
appears is small enough that a relative branch can reach from any part of the text section to any part
of the Global Offset Table or the Procedure Linkage Table. Because relative branches can reach +
32 MB, this restriction is not considered serious. See Chapter 5 for more information.

function:
mflr r0 # Save return addr in caller’s frame
stw r0,4 (rl) # .. .
1i r0,12 # Set up CTR with number of 64-bit
registers to save.
mr rll,rl # Set up rll with backchain pointer
mtctr r0
stwu rl,-len(rl) # Establish new frame
bl _save32gpr_26 # Save 32-bits of some GPRs
addi rll,r11,-120 # Adjust rll down 24 bytes to bottom
of 32-bit area, and down another 96
bytes for the offset
mflr r31 # Place GOT ptr in r31l
bl _savebdgpr_ctr_1l4_g # Save 64-bit nonvolatile GPRs and
fetch the GOT ptr
Save CR here if necessary
Body of function
1i r0,12 # Set up CTIR with number of regs to
restore
mtctr r0
addi rll,rl,len-120 # Compute offset from low end of
32-bit save area
bl _rest6éd4gpr_ctr_14 # Restore 64-bit GPRs
Restore CR here if necessary
addi rll,rl,len # Compute backchain word address
b _rest32gpr_26_x # Restore 32-bit GPRs and return
ATR-VECTOR

3.3.4.2. Register Saving and Restoring Functions (Vector)

The vector register saving and restoring functions described in this section are not part of the ABI. They
are defined here only to encourage uniformity among compilers in the code used to save and restore VRs.

63

On entry to the functions described in this section, 1O contains the address of the word just beyond the
end of the vector register save area, and they leave r0 undisturbed. They modify the value of r12. The
following code is an example of saving a vector register.

_savevr_20:

_savevr_21:

_savevr_22:

_savevr_23:

_savevr_24:

_savevr_25:

_savevr_26:

_savevr_27:

_savevr_28:

_savevr_29:

_savevr_30:

_savevr_31:

The following code shows how to restore a vector register.

_restvr_20:

_restvr_21:

_restvr_22:

_restvr_23:

_restvr_24:

_restvr_25:

_restvr_26:

_restvr_27:

_restvr_28:

_restvr_29:

_restvr_30:

addi
stvx
addi
stvx
addi
stvx
addi
stvx
addi
stvx
addi
stvx
addi
stvx
addi
stvx
addi
stvx
addi
stvx
addi
stvx
addi
stvx
blr

addi
lvx
addi
lvx
addi
lvx
addi
lvx
addi
lvx
addi
lvx
addi
1lvx
addi
1lvx
addi
lvx
addi
lvx
addi

rl2,r0,-192
v20,rl1l2,r0
rl2,r0,-176
v21l,r12,r0
rl2,r0,-160
v22,r12,r0
rl2,r0,-144
v23,rl2,r0
rl2,r0,-128
v24,rl12,r0
rlz2,r0,-112
v25,rl12,r0
rl2,r0,-96
v26,rl12,r0
rl2,r0,-80
v27,rl2,r0
rl2,r0,-64
v28,rl2,r0
rl2,r0,-48
v29,rl12,r0
rl2,r0,-32
v30,rl2,r0
rl2,r0,-16
v31l,rl2,r0

rl2,r0,-192
v20,rl2,r0
rl2,r0,-176
v21l,rl2,r0
rl2,r0,-160
v22,rl12,r0
rlz,r0,-144
v23,rl12,r0
rl2,r0,-128
v24,rl12,r0
rl2,r0,-112
v25,rl1l2,r0
rl2,r0,-96
v26,r12,r0
rl2,r0,-80
v27,rl1l2,r0
rl2,r0,-64
v28,rl2,r0
rlz2,r0,-48
v29,rl12,r0
rl2,r0,-32

Chapter 3. Low Level System Information

save

save

save

save

save

save

save

save

save

save

save

save

return to epilogue

v20

v21l

v22

v23

v24

v25

v26

v27

v28

v29

v30

v31

restore

restore

restore

restore

restore

restore

restore

restore

restore

restore

v20

v21

v22

v23

v24

v25

v26

v27

v28

v29

64

Chapter 3. Low Level System Information

lvx v30,r12,r0 # restore v30
_restvr_31: addi rl2,r0,-16
lvx v31l,r12,r0 # restore v3l
blr # return to epilogue
ATR-VECTOR

3.3.5. Profiling

This section describes how profiling (counting the number of times that a function is called) can be
performed on the Power Architecture. Profiling is not required for ABI compliance. If profiling is
supported, this implementation is one of those possible.

The code in Figure 3-24 can be inserted at the beginning of any function, before the execution of the
prologue code. The following is a high-level explanation of this code.

+ The link register is saved in the LR save word of the caller stack frame.
+ The register r0 contains the address of the count variable, which is initialized to 0.

» The function, _mcount (), gets called. This function increments the count variable. It also needs to
restore the link register to its original value so that it can handle the case where the profiled function
does not save the link register itself.

Figure 3-24. Profiling Example

.function_mc:

.data
.align 2
.long 0
.text
function:
mflr r0
addis rll,r0, .function_mc@ha
stw r0,4(rl)
addi r0,rll, .function_mc@1
bl _mcount

NOTE: In the figure, the assembler expression symbol@I represents the lower-order 16 bits of the
value for symbol. The assembly expression symbol@ha represents the higher-order 16 bits of the
value for symbol, adjusted so that the addition of symbol@I and the shifted value of symbol@ha

added together create the correct value of symbol. The adjustment is needed because symbol@I is

a signed value.

65

Chapter 3. Low Level System Information

3.3.6. Data Objects

Data objects with static storage duration are detailed here; stack resident data objects are omitted because
the virtual address of stack resident data objects are derived relative to the stack or frame pointers.

The only instructions that can access memory in the Power Architecture are load and store instructions.
Programs typically access memory by placing the address of the memory location into a register and
accessing the memory location indirectly through the registers because Power Architecture instructions
cannot hold 32-bit addresses directly. The values of symbols or their absolute virtual address are placed
directly into instructions for symbolic references in absolute code.

Absolute addresses are not permitted in position-independent instructions. The signed offset into the
Global Offset Table of the symbol is held in position-independent instructions that reference symbols.
Then the absolute address of the table entry for the particular symbol can be derived by adding the offset
to the appropriate Global Offset Table address using a general-purpose register. Figure 3-25 shows an
example of this method, r31 loaded in the sample prologue.

Examples of absolute and position-independent compilations are shown in the following figures. These
examples show the C language statements together with the generated assembly language. The
assumption for the following figures is that only executables can use absolute addressing while shared
objects can use position-independent code addressing. The figures are intended to demonstrate the
compilation of each C statement independent of its context, hence there can be redundant operations in
the code.

Figure 3-25. Absolute Load and Store Example

C code Assembly code
extern int src; .extern src
extern int dst; .extern dst
extern int xptr; .extern ptr
.section ".text"
dst = src; lis 9, src@ha

lwz 0,src@l(9)
lis 9,dst@ha
stw 0,dst@1(9)

ptr = &dst; lis 11,ptr@ha
lis 9,dst@ha
la 0,dst@1(9)
stw 0,ptr@1l(11)

*ptr = src; lis 9,ptr@ha
lwz 11,ptrQ@1(9)
lis 9, src@ha
lwz 0,src@l(9)
stw 0,0(11)

66

Chapter 3. Low Level System Information

Note: The offset in the Global Offset Table where the value of the symbol is stored is given by the
assembly syntax symbol@got. This syntax represents the address of the variable named symbol. The
offset for this assembly syntax cannot be any larger than 16 bits. In cases where the offset is greater
than 16 bits, the assembly syntax that is used is:

- High adjusted part of the offset: symbol@got@ha

- High part of the offset: symbol@got@h

- Low part of the offset: symbolegotel

Figure 3-26. Small Model Position-Independent Load and Store

C code Assembly code
extern int src; .extern src
extern int dst; .extern dst
extern int xptr; .extern ptr
.section ".text"

GOT pointer in r31
dst = src; lwz 9,src@got (31)
1wz 0,0(9)
lwz 9,dst@got (31)
stw 0,0(9)
&dst; lwz 9,ptr@got (31)
lwz 0,dst@got (31)
stw 0,0(9)
*ptr = src; lwz 9,ptr@got (31)
1wz 11,0(9)
lwz 9,src@got (31)
1wz 0,0(9)
stw 0,0(11)

ptr

Figure 3-27. Large Model Position-Independent Load and Store

C code Assembly code
extern int src; .extern src
extern int dst; .extern dst
int xptr; .extern ptr
.section ".text"

Assumes GOT pointer in r31

dst = src; addis r6,r31l,srclgot@ha
1wz r6,src@got@l (r6)
addis r7,r31,dst@got@ha
1wz r7,dst@got@l (r7)
lwz r0,0(xr6)
stw r0,0(xr7)

ptr = & dst; addis r6,r31,dst@got@ha
1wz r0,dst@got@l (r6)
addis r7,r31,ptr@got@ha
lwz r7,ptr@got@l (r7)
stw r0,0(r7)

67

Chapter 3. Low Level System Information

*ptr = src; addis r6,r31l,srclgot@ha
1wz r6,src@got@l (r6)
addis r7,r31,ptr@got@ha
lwz r7,ptr@gotRl (r7)
lwz r0,0(ro6)
1wz r7,0(x7)
stw r0,0(xr7)

3.3.7. Function Calls

Direct function calls are made in programs with the Power Architecture bl instruction. A b1 instruction
can reach 32 MB backwards or forwards from the current position due to a self-relative branch
displacement in the instruction. Therefore the size of the text segment in an executable or shared object is
constrained when a b1 instruction is used to make a function call. As depicted in the figure following, the
bl instruction is generally used by a compiler to call a function. Two possibilities exist for the location of
the function with respect to the caller:

+ The called function is in the same executable or shared object as the caller. In this case the symbol is
resolved by the link editor and the b1 instructions branches directly to the called function as in Figure
3-28.

Figure 3-28. Direct Function Call

C code Assembly code

extern void function();
function () ; bl function

« The called function is not in the same executable or shared object as the caller. In this case the symbol
cannot be directly resolved by the link editor. The link editor generates a branch to glue code.
Subsequently the dynamic linker changes the glue code to branch to the function requested by the
caller. See Procedure Linkage Table in Section 5.2.5.

For indirect function calls, the address of the function to be called is placed in the CTR register and a
betrl instruction is used to perform the indirect branch as shown in Figure 3-29, Figure 3-30, and
Figure 3-31.

Figure 3-29. Absolute Indirect Function Call

extern void function();

extern void (xptrfunc) ();
.section .text

ptrfunc = function; lis rll,ptrfunc@ha
lis r9, function@ha
la r0, function@l (r9)
stw r0,ptrfunc@l (rll)

return (xptrfunc) (); lis r9,ptrfunc@ha

68

Chapter 3. Low Level System Information

1wz r0,ptrfunc@l (r9)
mtctr r0
bctrl

Branches less than or equal to £ 64 KB (16-bit signed offset + 32 KB) may use small model addressing.
Figure 3-30 demonstrates how to make an indirect function call using small model position-independent
branching.

Figure 3-30. Small Model Position-Independent Indirect Function Call

C Code Asm Code
extern void function();
extern void (xptrfunc) ();
.section .text
/+ GOT pointer is in rll «/
ptrfunc = function; lwz r9,ptrfunclgot (rll)
1wz r0, function@got (rll)
stw r0,0(r9)

return (*ptrfunc) (); lwz r9, ptrfunclgot (rll)
1wz r0,0(r9)
mtctr r0
bctrl

Branches in excess of + 64 KB must use large model addressing. Figure 3-31 demonstrates how to make
an indirect function call using large model position-independent branching.

Figure 3-31. Large Model Position-Independent Indirect Function Call

C code Assembly code
extern void function();
extern void (xptrfunc) ();
.section .got
/+ got_base is the start of the .got section x/
/+ offset -0x8000 from the GOT pointer. x/
.got_base = .+32768
.ptrfunc .long ptrfunc
.function .long function
.section ".text"

/* GOT pointer in rl0 «/

ptrfunc=function lwz 9, .ptrfunclgot-.got_base(rll)
lwz 0, .function@got-.got_base(rll)
stw 0,0(9)

(xptrfunc) () lwz 9, .ptrfunclgot-.got_base(rll)
1wz 0,0(9)
mtctr O
bctrl

69

Chapter 3. Low Level System Information

3.3.8. Branching

The flow of execution in a program is controlled by the use of branch instructions. Branch instructions
can jump to locations up to 32 MB in either direction since they hold a value with a 64 MB range that is
relative to the current location of the program execution, which is defined by the architecture.

The following figure shows the model for branch instructions.

C code Assembly code
label: .LO1:
goto label; b .LO1

Branch selection is provided in C with switch statements. An address table is used by the compiler to
implement the switch statement selections in cases where the case labels satisfy grouping constraints.
Details that are not relevant are not shown by the use of simplifying constraints in the examples that
follow.

+ 112 holds the selection expression.
+ Case label constants begin at zero.

« The assembler names .Lcasei, .Ldefault, and .Ltab are used for the case labels, the default, and the
address table respectively.

Absolute Switch Code
C code Assembly code
switch (3) cmplwi rl2, 4
{ bge .Ldefault
case 0: slwi rl2, 2
Ce addis rl2, rl2, .Ltab@ha
case 1: 1wz r0, .Ltab@l(rl2)
mtctr r0
case 3: bctr
. .rodata
default: .Ltab:
.long .Lcase0
t .long .Lcasel
.long .Ldefault
.long .Lcase3
.text

Position-Independent Switch Code, All Models

C code Assembly code
switch (3) cmplwi rl2, 4
{ bge .Ldefault
case 0: bl L1
.Ll: slwi rl2, 2
case 1: mflr rll
Ce addi rl2, rlz,.Ltab-.L1
case 3: add r0, rl2, rll
. mtctr r0
default: bctr
.Ltab:
} b .Lcase0

70

Chapter 3. Low Level System Information

b .Lcasel
b .Ldefault
b .Lcase3

3.3.9. Dynamic Stack Space Allocation

When allocated, a stack frame may be grown or shrunk dynamically as many times as necessary across
the lifetime of a function. Standard calling conventions must be maintained because a subfunction can be
called after the current frame is grown and that subfunction may stack, grow, shrink, and tear down a
frame between dynamic stack frame allocations of the caller. The following constraints apply when
dynamically growing or shrinking a stack frame:

» Maintain 16-byte alignment.

« Stack pointer adjustments shall be performed atomically so that at all times the value of the backchain
word is valid.

« Maintain addressability to the previously allocated local variables.

Note: Using a frame pointer is the recognized method for maintaining addressability to arguments or
local variables. For correct behavior in the cases of set jmp () and longjmp () the frame pointer shall
be allocated in a nonvolatile general-purpose register.

Figure 3-32. Before Dynamic Stack Allocation

High Address Back Chain

J

| Register Save Areas

Area containing local,
non-static variables

]

Callee Parameter } Stack
]
J

Save Area
| LR Save Word
Low Address [[Back Chain

GPR1
| Stack Pointer]

An example organization of a stack frame before a dynamic allocation.

Figure 3-33. Example code to allocate n bytes:

#define n 13

char *a = alloca(n);
rnd(x) = round x to be multiple of stack alignment
psave = size of parameter save area (may be zero).

p = rnd(sizeof (psave+8)) ; Offset to the start of the dynamic allocation

71

Chapter 3. Low Level System Information

lwz 0,0(1) ; Load backchain word.

mr 31,1 ; Frame pointer to access previously allocated.

stwu 0, —rnd(n+15) (1) ; Store new backchain, gquadword-aligned.

addi 3,1,p ; R3 = new data area following parmameter save area.

Note: Additional instructions might be needed to align the allocated data area or the stack pointer.
Additional instructions will be necessary for an allocation of variable size.

Figure 3-34. After Dynamic Stack Allocation

High Address r Back Chain
L

| Register Save Areas

| Area containing local,
\non-static variables

End of Dynamic
Allocation Area

Current
_ Stack
Start of Dynamic Frame
Allocation Area

Offset to th
st:'it 0?‘ thg Callee Parameter

dynamic Save Area

allocation [New LR Save Word |
area (p)

Low Address Updated Back Chain |

GPR1
| Stack Pointer |

GPR31
' Frame Pointer }

An example organization of a stack frame after a dynamic allocation.

3.4. DWARF Definition

Although this ABI itself does not define a debugging format, DWARF (Debug with Arbitrary Record
Format) (see Section 1.1) is defined here for systems that implement the DWAREF specification.

The DWAREF specification is used by compilers and debuggers to aid source-level or symbolic
debugging. However, the format is not biased toward any particular compiler or debugger.

72

Chapter 3. Low Level System Information
Per the DWAREF specification, a mapping from Power Architecture registers to register numbers is
required as described in Table 3-34.

Special Purpose Registers or SPRs are mapped into DWARF as 100 plus their SPR number. Performance
Monitor Registers or PMRs are mapped into DWARF as 2048 plus the PMR number. Kernel debuggers
that display privileged registers are to use the following DWARF register number mapping.

All instances of the Power Architecture use the following mapping for encoding registers into DWARF.

Table 3-34. Register Mappings

Register Name Number Abbreviation

General-purpose registers 0-31 RO-R31

Floating-point registers 32-63 FO-F31

Condition register 64 CR

Floating-point status and control 65 FPSCR

register

Machine state register 66 MSR

Accumulator 99 ACC

SPRs 100-1123 LR, CTR, etc.

Vector registers 1124-1155 VO0-V31

Reserved 1156-1199

SPE high parts of GPRs 1200-1231

Reserved 1232-2047

Device control registers 3072-4095 DCRs

Performance monitor registers 4096-5120 PMRs
ATR-CXX

3.5. Exception Handling

Where exceptions can be thrown or caught by a function, or thrown through that function, or where a
thread can be canceled from within a function, the locations where nonvolatile registers have been saved
must be described with unwind information. The format of this information is based on the DWARF Call
Frame Information with extensions.

Any implementation that generates unwind information must also provide exception handling functions
that are the same as those described in the Itanium C++ ABI, the normative text on the issue. See Section
1.1 for directions on obtaining this information.

ATR-CXX

73

Chapter 4. Object Files

4.3. ELF Header

The file class member of the ELF header identification array, e_ident [EI_CLASS], identifies the ELF
file as 32-bit encoded by holding the value 1, defined as class ELFCLASS32.

For a big-endian encoded ELF file the data encoding member of the ELF header identification array,
e_ident [EI_DATA], holds the value 2, defined as data encoding ELFDATA2MSB. For a little-endian
encoded ELF file it holds the value 1, defined as data encoding ELFDATA2LSB.

The ELF header e_f1lags member may hold the following bit masks that are applicable on the Power
Architecture.

Table 4-1. e_flags Bit Masks

Mask Value Description
EF_PPC_EMB 0x80000000 Power Architecture Embedded Flag.

EF_PPC_RELOCATABLE_LIB 0x00008000 Mark ELF file as relocatable (containing
Position Independent Code, see Section 5.1.1)
and intended for use in a library.

EF_PPC_RELOCATABLE 0x00010000 Mark ELF file as relocatable (containing
Position Independent Code, see Section 5.1.1).

The ELF header e_machine member identifies the architecture of the ELF file as the Power
Architecture by holding the value 20, defined as machine name EM_PPC.

4.4. Special Sections

For the Power Architecture the following special sections with their corresponding section types and
attributes apply:

.got

This section holds the Global Offset Table (GOT). Further information on accessing data in the
GOT is contained in Section 3.3.6. Information on the layout of the Global Offset Table is in Section

5.2.3.
Name Value
sh_name .got
sh_type SHT_PROGBITS

sh_flags SHF_ALLOC + SHF_WRITE

.plt
This section holds the Procedure Linkage Table (PLT) (see Section 5.2.5).

74

.sbss

Chapter 4. Object Files

ATR-SECURE-PLT

Name Value

sh_name .plt

sh_type SHT_PROGBITS

sh_flags SHF_ALLOC + SHF_WRITE

ATR-BSS-PLT

Name Value

sh_name plt

sh_type SHT_NOBITS

sh_flags SHF_ALLOC + SHF_WRITE + SHF_EXECINSTR
.sdata

Initialized data can be held in this section, which is part of the Small Data Area (SDA). Further
information is found in Section 4.7.

Name Value

sh_name .sdata

sh_type SHT_PROGBITS

sh_flags SHF_ALLOC + SHF_WRITE

Uninitialized data (set to zero on program execution) can be held in this section, which is part of the
SDA (Small Data Area). Further information is found in Section 4.7.

Name Value

sh_name .sbss

sh_type SHT NOBITS

sh_flags SHF_ALLOC + SHF_WRITE

75

Chapter 4. Object Files

.PPC.EMB.apuinfo

If an APU is required this section will contain records describing which are required for a program
to execute properly. See Section 4.10 for further details.

Name Value

sh_name .PPC.EMB.apuinfo
sh_type SHT_NOTES
sh_flags 0

4.6. Symbol Table

4.6.1. Symbol Values

An executable file that contains a symbol reference that is to be resolved dynamically by an associated
shared object will have a symbol table entry for that symbol. This entry will identify the symbol as
undefined by setting the st_shndx member to SHN_UNDEF.

An executable file that needs to compare the value of two symbol references will have a symbol table
entry for that symbol where the st_value member is nonzero.

If the st_value of an undefined symbol is nonzero, the loader must resolve every reference to the named
symbol to the same value. This insures that all pointers to the symbol will be identical. If st_value is
zero, the loader may resolve these symbols to different values, for example, to point directly to the
symbol in some cases or into the GOT in other cases. If no PLT entry is allocated for the symbol, then
st_value is zero.

ATR-SECURE-PLT

Under the Secure-PLT ABI, if a PLT entry is allocated for a symbol reference in the executable file the
value of this st_value member is the address of an executable PLT call code stub. This executable stub is
used for branching to the virtual address held by the nonexecutable PLT entry for the symbol. The
content of the PLT entry defaults to the address of a PLT symbol resolver stub, which will direct the
dynamic linker to resolve the reference to the symbol. Following resolution the PLT entry holds the
absolute virtual address of the symbol.

ATR-BSS-PLT

Under the BSS-PLT ABI this st_value member holds the R_PPC_REL32 relocated address into the .plt
section for the PLT entry used to resolve the undefined symbol. This PLT entry contains executable code
used to dynamically resolve the address of the target symbol. The number of instructions in this code
stub varies on the distance to the target.

76

Chapter 4. Object Files

Referencing GOT nonlocal statics is shown in Figure 3-26 and Figure 3-27. Taking the address of
nonstatic function pointers is indicated by <symbol>@plt. Figure 3-30 and Figure 3-31 demonstrate
how to perform this action.

4.7. Small Data Area

The small data area resides within the Data segment. It is composed of the .sdata and .sbss sections
which contain initialized and uninitialized data items, respectively. The data items in these sections are
addressed by 16-bit signed offsets with respect to the base of the small data area.

The use of small data areas for data items typically results in smaller programs and faster program
execution.

The small data area is adjacent to the initialized and uninitialized data in the Data segment of both
executables and shared objects.

ATR-BSS-PLT

The typical order of sections in the Data segment (some possibly empty) under the BSS-PLT ABI is
shown in Figure 4-1.

Figure 4-1. Section Ordering Under the BSS-PLT

.data
.got
.sdata
.sbss
.plt
.bss

ATR-SECURE-PLT

Under the Secure-PLT ABI, for security reasons, the .got and .plt may be marked read-only after
relocation, which requires placing the .got and .plt with other sections that are similarly made read-only
after relocation, before sections that remain read-write as shown in Figure 4-2. If an implementation does
not mark the .got and .plt sections as read-only after relocation it may still reorder the sections as
indicated or it may use the section layout as described in Figure 4-1. See Section 5.2.5.2 for information
on the Secure-PLT ABI.

Figure 4-2. Section Ordering Under the Secure-PLT
.got
.plt

.data
.sdata

77

Chapter 4. Object Files

.sbss
.bss

The size of the small data area is limited. A data item is placed in the small data area by a compiler that
supports small data relative addressing based on its size. All data items up to a certain specified size
(with 8 bytes being the typical default size) are placed into the small data area.

The link editor fails to build the executable file or shared object file if the default or specified size for the
placement of items into the small data area results in the small data area being too large to be addressed
with 16-bit relative offsets. In such a situation, recompilation with a smaller value for the size criterion
must be done.

4.7.1. Use of the Small Data Area in Executables

In the case of executable files, the small data area may contain up to 64 KB of data items with local or
global scope. The link editor defines the symbol _spa_BASE_ (small data area base) to be an address
relative to which all data in the .sdata and .sbss sections may be addressed with 16-bit signed offsets. In
case there is not a .sdata or a .sbss section, the symbol _sDA_BASE_ is defined to be 0.

For a data item in the .sdata or .sbss sections, a compiler may generate short-form one instruction
references. In an executable file, such a reference is relative to the address of _SDA_BASE_ symbol,
which is held in the small data area pointer register, r13.

At process initialization time, r13 is loaded with the value of the symbol _spa_BASE_. General-purpose
register r13 retains this value subsequently, i.e., its contents remain intact.

ATR-BSS-PLT

4.7.2. Use of the Small Data Area in Shared Objects

ATR-SECURE-PLT

In a shared object under the Secure-PLT ABI, addressing .sdata and .sbss using short (16-bit) offsets is
not supported and therefore using the small data area in shared objects is not supported, which is a
change from the SYSV ABIL

Because the small data area follows the Global Offset Table in a shared object, the data in the small data
area can be addressed relative to the GOT pointer. For each shared object, the symbol _sDA_BASE_ shall
have the same value possessed by the symbol _GLOBAL_OFFSET_TABLE_.

78

Chapter 4. Object Files

Since the small data area pointer register, r13, holds the value of the executable file’s _SDA_BASE_
symbol, a shared object may not modify r13 and should not attempt to use it for referencing the shared
object’s small data area.

The _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ symbols are relative to each shared object and
therefore the small data area of a shared object may only contain data items having local (i.e., non
global) scope.

When _GLOBAL_OFFSET_TABLE_ relative addressing is used in a shared object to access the small data
area, the size of the small data area can be 32 KB at the maximum, although it can be less if it happens
that the Global Offset Table is large.

A compiler may generate short-form one instruction references relative to a register that contains the
address of the shared object’s _SDA_BASE_ symbol.

ATR-BSS-PLT

ATR-SPE

4.9. DWARF Additions

In order to provide debuggers with the ability to identify where __ev64_opaque__ variables are located,
several new DWARF operations have been added, as shown in the following table.

Table 4-3. DWARF Additions For __ev64_opaque__ Support

Operation Value Description

DW_OP_ev64_opaque_regn 0xe0-Oxff The data object addressed is in the upper and
lower halves of register n, where n is 0 through
31.

ATR-SPE

4.10. APU Information Section

This section allows disassemblers and debuggers to properly interpret the instructions within the binary,
and could also be used by operating systems to provide emulation or error checking of the APU
revisions. The format matches that of typical ELF note sections, as shown in Table 4-4.

79

Table 4-4. Typical EIf Note Section Format

length of name (in bytes)

length of data (in bytes)

type

name (null-terminated, padded to 4-byte alignment)

data

Chapter 4. Object Files

For the .PPC.EMB.apuinfo section, the name shall be APUinfo\0, the type shall be 2, and the data shall
contain a series of words containing APU information, one per word as in Table 4-5 and Table 4-6. The
APU information contains two unsigned halfwords: the upper half contains the unique APU identifier,

and the lower half contains the revision of that APU.

Table 4-5. Object File a.o

Offset Value Comment
0 0x00000008 | 8 bytes in "APUinfo\0"
4 0x0000000C | 12 bytes (3 words) of APU information
8 0x00000002 | NOTE type 2
12 "APUinfo\0" | string identifying this as APU information
20 0x00010001 APU #1, revision 1
24 0x00020003 APU #2, revision 3
28 0x00040001 APU #4, revision 1

Table 4-6. Object File b.o

Offset Value Comment
0 0x00000008 | 8 bytes in "APUinfo\0"
4 0x00000008 | 8 bytes (2 words) of APU information
8 0x00000002 | NOTE type 2
12 "APUinfo\0" | string identifying this as APU information
20 0x00010002 | APU #1, revision 2
24 0x00040001 | APU #4, revision 1

Linkers shall merge all .PPC.EMB.apuinfo sections in the individual relocatable files into one, with
merging of per-APU information as demonstrated in Table 4-7.

80

Chapter 4. Object Files

Table 4-7. Merged Object File b.o

Offset Value Comment
0 0x00000008 | 8 bytes in "APUinfo\0"
4 0x0000000C | 12 bytes (3 words) of APU information
8 0x00000002 | NOTE type 2
12 "APUinfo\0" | string identifying this as APU information
20 0x00010002 | APU #1, revision 2
24 0x00020003 | APU #2, revision 3
28 0x00040001 APU #4, revision 1

Note: It is assumed that a later revision of any APU is compatible with an earlier one, but the
converse is not true. Thus, the resultant .PPC.EMB.apuinfo section requires APU #1 revision 2 or
greater to work, and will not work on APU #1 revision 1. If an APU revision breaks backwards
compatibility, it must obtain a new unique APU identifier.

Table 4-8. APU Identifiers

APU Identifier (16 Bits) | APU/Extension

0x003f AltiVec
0x0040 ISEL
0x0041 PMR (Performance Monitor)
0x0042 RFMCI (Machine-check)
0x0043 CACHE_LOCK (Cache-locking)
0x0100 e500 SPE
0x0101 e500 SPFP/EFS
0x0102 €500 BRLOCK/BR_LOCK (Branch-locking/BTB locking)
0x0104 VLE

0x0000..0x003E Reserved for legacy use

0x0044..0x00FF Reserved

A link editor may optionally warn when different relocatable objects require different revisions of an
APU, because moving the revision up may make the executable no longer work on processors with the
older revision of the APU. In this example, the link editor could emit a warning like "Warning:bumping
APU #1 revision number to 2, required by b.o."

4.13. Relocation Types

The relocation entries in a relocatable file are used by the link editor to transform the contents of said file
into an executable file or shared object file. The application and result of a relocation are similar for both.
Several relocatable files may be combined into one output file. The link editor merges the content of the
files, sets the value of all function symbols, and performs relocations.

The 32-bit Power Architecture uses E1£32_Rela relocation entries exclusively. A relocation entry may
operate upon a halfword, word, or doubleword. The r_of fset member of the relocation entry

81

Chapter 4. Object Files

designates the first byte of the address affected by the relocation. The subfield of r_offset affected by a
relocation is implicit in the definition of the applied relocation type. The r_addend member of the
relocation entry serves as the relocation addend which is described per relocation formula.

A relocation type defines a set of instructions and calculations necessary to alter the subfield data of a
particular relocation field.

4.13.1. Relocation Fields

The following relocation fields identify a subfield of an address affected by a relocation.

Bit numbers appear at the bottom of the boxes. Byte numbers appear in the top of the boxes; big-endian
in the upper left corners and little-endian in the upper right corners. The byte order specified in a
relocatable file’s ELF header applies to all the elements of a relocation entry, the relocation field
definitions, and relocation type calculations.

word32
Specifies a 32-bit bit-field taking up 4 bytes maintaining 4-byte alignment unless otherwise
indicated.
0 311 212 113 0
word32
0 31
word30

Specifies a 30-bit bit-field taking up bits 0-29 of a word, maintaining 4-byte alignment unless
otherwise indicated.

0 311 212 113 0
word30
0 29 |30 31
low24

Specifies a 24-bit bit-field taking up bits 6-29 of a word, maintaining 4-byte alignment. The other
bits remain unchanged. A branch instruction is an example of this field.

0 311 212 113 0
low24
0 516 29 130 31

82

Chapter 4. Object Files

low21
Specifies a 21-bit bit-field occupying the least significant bits of a word with 4-byte alignment.
0 3|1 212 1|3 0
low21
0 10 31
low14

Specifies a 14-bit bit-field taking up bits 16-29 and possibly bit 10 (branch prediction bit) of a word,

maintaining 4-byte alignment. The other bits remain unchanged. A conditional branch instruction is
an example usage.

0 311 212 113 0
low14
0 10 15 |16 29 |30 31
half16

Specifies a 16-bit bit-field taking up two bytes, maintaining 2-byte alignment. The immediate field
of an Add Immediate instruction is an example of this field.

0 1|1 0
half16
0 15
ATR-SPE

4.13.2. SPE Specific Relocation Fields
mid5S

Specifies a 5-bit bit-field occupying the most significant bits of the least-significant halfword of a
word with 4-byte alignment. This relocation field is used primarily for the SPE APU load/store

instructions.

0 301 212 113 0
mid5

0 15 |16 20 |21 31

83

Chapter 4. Object Files

mid10

Specifies a 10-bit bit-field occupying bits 11 through 20 of a word with 4-byte alignment. This
relocation field is used primarily for the SPE APU load/store instructions.

0 311 212 113 0
mid10

0 10 |11 20 |21 31
ATR-SPE

4.13.4. Relocation Notations

The following notations are used in the relocation table.

A

Represents the addend used to compute the value of the relocatable field.

Represents the base address at which a shared object file has been loaded into memory during
execution. Generally, a shared object file is built with a O base virtual address, but the execution
address will be different. See Program Header in the System V ABI for more information about the
base address.

Represents the offset into the Global Offset Table, relative to the _GLOBAL_OFFSET_TABLE_
symbol, at which the address of the relocation entry’s symbol will reside during execution. This
implies the creation of a .got section. See Section 3.3 and the Section 5.2.3 for more information.

Reference in a calculation to the value G implicitly creates a GOT entry for the indicated symbol.

Represents the section offset or address of the procedure linkage table entry for the symbol. This
implies the creation of a .plt section if one does not already exist. It also implies the creation of a
PLT entry for resolving the symbol. For an unresolved symbol the PLT entry points to a PLT
resolver stub. For a resolved symbol a Procedure Linkage Table entry holds the final effective
address of a dynamically resolved symbol (see Section 5.2.5).

Represents the place (section offset or address) of the storage unit being relocated (computed using
r_offset).

Represents the offset of the symbol within the section in which the symbol is defined (its
section-relative address).

84

Chapter 4. Object Files

Represents the value of the symbol whose index resides in the relocation entry.

Denotes 32-bit modulus addition.

Denotes 32-bit modulus subtraction.
>>
Denotes arithmetic right-shifting.
#lo(value)
Denotes the least significant 16 bits of the indicated value, i.e.,
#lo(x) = (x & Oxffff).
#hi(value)
Denotes bits 16 through 31 of the indicated value, i.e.,
#hi(x) = ((x >> 16) & Oxffff).
#ha(value)

Denotes the high adjusted value: bits 16 through 31 of the indicated value, compensating for #lo()
being treated as a signed number, i.e.,

#ha(x) = (((x >> 16) + ((x & 0x8000) 2 1 : 0)) & Oxffff)
_SDA_BASE__

A symbol defined by the link editor whose value in shared objects is the same as
_GLOBAL_OFFSET_TABLE_, and in executable programs is an address within the small data area.

_BRTAKEN
_BRNTAKEN

Specify whether the branch prediction bit (bit 10) should indicate that the branch will be taken or
not taken, respectively. For an unconditional branch, the branch prediction bit must be 0.

The following rules apply to the relocation types defined in the relocation table described later:

« For relocation types in which the names contain 14 or 16, the upper 17 bits of the value computed
before shifting must all be the same. For relocation types whose names contain 24, the upper 7 bits of
the value computed before shifting must all be the same. For relocation types whose names contain 14
or 24, the low 2 bits of the value computed before shifting must all be zero.

+ The relocation types whose Field column entry contains an asterisk (*) are subject to failure if the
value computed does not fit in the allocated bits.

85

4.13.5. Relocation Types Table

Table 4-9. Relocation Table

Chapter 4. Object Files

Relocation Name Value Field Expression
R_PPC_NONE 0 none none

R_PPC_ADDR32 1 word32 S+A

R_PPC_ADDR?24 2 low24* S+A)>>2
R_PPC_ADDRI16 3 half16* S+A
R_PPC_ADDRI16_LO 4 half16 #lo(S + A)
R_PPC_ADDRI16_HI 5 half16 #hi(S + A)
R_PPC_ADDRI16_HA 6 half16 #ha(S + A)
R_PPC_ADDRI14 7 low14* S+A)>>2
R_PPC_ADDRI14_BRTAKEN 8 low14* S+A>>2
R_PPC_ADDR14_BRNTAKEN 9 low14%* S+A>>2
R_PPC_REL24 10 low24* S+A-P)>>2
R_PPC_RELI14 11 low14* S+A-P)>>2
R_PPC_REL14_BRTAKEN 12 low14%* S+A-P)>>2
R_PPC_REL14_BRNTAKEN 13 low14* S+A-P)>>2
R_PPC_GOT16 14 half16* G

R_PPC_GOT16_LO 15 half16 #lo(G)
R_PPC_GOT16_HI 16 half16 #hi(G)
R_PPC_GOT16_HA 17 half16 #ha(G)
R_PPC_PLTREL24 18 low24* L+A-P)>>2
R_PPC_COPY 19 none (see Section 4.13.6)
R_PPC_GLOB_DAT 20 word32 S + A (see Section 4.13.6)
R_PPC_JMP_SLOT 21 none (see Section 4.13.6)
R_PPC_RELATIVE 22 word32 B+A (see Section 4.13.6)
R_PPC_LOCAL24PC 23 low24* (see Section 4.13.6)
R_PPC_UADDR32 24 word32* S + A (see Section 4.13.6)
R_PPC_UADDRI16 25 half16* S + A (see Section 4.13.6)
R_PPC_REL32 26 word32* S+ A-P
R_PPC_PLT32 27 word32* L

R_PPC_PLTREL32 28 word32* L-P

R_PPC_PLT16_LO 29 half16 #lo(L)
R_PPC_PLT16_HI 30 half16 #hi(L)
R_PPC_PLT16_HA 31 half16 #ha(L)
R_PPC_SECTOFF 33 half16* R+ A
R_PPC_SECTOFF_LO 34 half16 #lo(R + A)
R_PPC_SECTOFF_HI 35 half16 #hi(R + A)
R_PPC_SECTOFF_HA 36 half16 #ha(R + A)
R_PPC_ADDR30 37 word30 S+A-P)>>2

86

Table 4-10. Relocation Table - Continued

Chapter 4. Object Files

Relocation Name Value Field Expression

38
Assigned to the PowerPC 64-bit
ABI.

66

67
Assigned to the TLS ABI. These
relocations are described in the
TLS Relocation Table in Section
4.15.

100

101
Assigned for embedded system
use.

116

117

Reserved for future use.

179

186
Reserved for future embedded
system use.

200

87

Chapter 4. Object Files

ATR-SPE
R_PPC_EMB_SPE_DOUBLE 201 mid5* (#lo(S + A)) >>3
R_PPC_EMB_SPE_WORD 202 mid5* (#lo(S + A)) >>2
R_PPC_EMB_SPE_HALF 203 mid5* (#lo(S + A)) >>1
R_PPC_EMB_SPE_DOUBLE_SDAREL 204 mid5* (#lo(S + A-_SDA_BASE_)) >>
3
R_PPC_EMB_SPE_WORD_SDAREL 205 mid5* (#lo(S + A-_SDA_BASE_)) >>
2
R_PPC_EMB_SPE_HALF_SDAREL 206 mid5* (#lo(S + A-_SDA_BASE_)) >>
1
R_PPC_EMB_SPE_DOUBLE_SDA2REL 207 mid5* (#lo(S + A-_SDA2_BASE_)) >>
3
R_PPC_EMB_SPE_WORD_SDA2REL 208 mid5* (#lo(S + A-_SDA2_BASE_)) >>
2
R_PPC_EMB_SPE_HALF_SDA2REL 209 mid5* (#lo(S + A-_SDA2_BASE_)) >>
1
R_PPC_EMB_SPE_DOUBLE_SDAOREL 210 mid5* (#lo(S + A)) >>3
R_PPC_EMB_SPE_WORD_SDAOREL 211 mid5* (#lo(S + A)) >> 2
R_PPC_EMB_SPE_HALF_SDAOREL 212 mid5* (#lo(S + A)) >> 1
R_PPC_EMB_SPE_DOUBLE_SDA 213 midl0* Y || (#lo(X + A)) >> 3)
R_PPC_EMB_SPE_WORD_SDA 214 midl0* Y || (#lo(X + A)) >>2)
R_PPC_EMB_SPE_HALF_SDA 215 midl0* Y || (#lo(X 4+ A)) >> 1)
!ATR-VLE
216
Assigned for VLE use.
233
234
Reserved for future use.
248

ATR-SECURE-PLT

R_PPC_REL16
R_PPC_RELI16_LO
R_PPC_RELI16_HI
R_PPC_REL16_HA

249
250
251
252

half16*
half16
half16
half16

S+A-P
#10(S + A - P)
#hi(S + A - P)
#ha(S + A - P)

88

Chapter 4. Object Files

253
Reserved for future use.

255
4.13.6. Relocation Descriptions
The following list describes relocations which can require special handling or description.

R_PPC_GOT16*

These relocation types resemble the corresponding R_PPC_ADDRI16* types, except that they refer
to the address of the symbol’s Global Offset Table entry and additionally instruct the link editor to
build a Global Offset Table.

ATR-SECURE-PLT
R_PPC_REL16*

These relocation types are used to compute the distance between a symbol address and the current
address. These relocations types are used under the Secure-PLT ABI to compute the address of the
.got section because the link editor knows the fixed distance between the
_GLOBAL_OFFSET_TABLE_ symbol and an address in the .text section.

R_PPC_PLTREL24

This relocation indicates that reference to a symbol should be resolved through a call to the
symbol’s Procedure Linkage Table entry. Additionally it instructs the link editor to build a
procedure linkage table for the executable or shared object if one is not created.

ATR-BSS-PLT

Under the BSS-PLT ABI this relocation type may be implemented as a direct branch and link into
the executable PLT slot which holds the absolute address (after resolution) of the specified symbol.
There is an implicit assumption that the Procedure Linkage Table for a shared object or executable
will be within £ 32 MB of an instruction that branches to it.

ATR-SECURE-PLT

Under the Secure PLT ABI this relocation type may be implemented as a branch to a stub used for
loading the symbol’s absolute address (after resolution) from its PLT slot. There is an implicit
assumption that the address of the PLT entry loading stub be within &= 32 MB of an instruction that
branches to it, so that the R_PPC_PLTREL?24 relocation type is the only one needed for accessing it.

89

Chapter 4. Object Files

R_PPC_COPY

The link editor creates this relocation type for dynamic linking. Its offset member refers to a
location in a writable segment. The symbol table index specifies a symbol that should exist both in
the current relocatable file and in a shared object file. During execution, the dynamic linker copies
data associated with the shared object’s symbol to the location specified by the offset.

R_PPC_GLOB_DAT

This relocation type resembles R_PPC_ADDR, except that it sets a Global Offset Table entry to the
address of the specified symbol. This special relocation type allows determination of the
correspondence between symbols and Global Offset Table entries.

R_PPC_JMP_SLOT

The link editor creates this relocation type for dynamic linking. Its offset member gives the location
of a Procedure Linkage Table entry. The dynamic linker modifies the Procedure Linkage Table entry
to transfer control to the designated symbol’s address (see Section 5.2.5).

R_PPC_RELATIVE

The link editor creates this relocation type for dynamic linking. Its offset member gives a location
within a shared object that contains a value representing a relative address. The dynamic linker
computes the corresponding virtual address by adding the virtual address at which the shared object
was loaded to the relative address. Relocation entries for this type must specify O for the symbol
table index.

R_PPC_LOCAL24PC

This relocation type resembles R_PPC_REL24, except that it uses the value of the symbol within
the object, not an interposed value, for S in its calculation. The symbol referenced in this relocation
normally iS _GLOBAL_OFFSET_TABLE_, which additionally instructs the link editor to build the
Global Offset Table.

R_PPC_UADDR*

These relocation types are the same as the corresponding R_PPC32_ADDR* types, except that the
datum to be relocated is allowed to be unaligned.

ATR-SPE
R_PPC_EMB_SDA21

ATR-SPE

The most significant 11 bits at the address pointed to by the relocation entry shall be left unchanged.

If the symbol whose index is in r_info is contained in .sdata or .sbss, then the link editor shall
place in the next most significant 5 bits the value 13 (for r13); if the symbol is in .PPC.EMB.sdata2
or .PPC.EMB.sbss2, then the link editor shall place in those 5 bits the value 2 (for r2); if the symbol
is in .PPC.EMB.sdata0 or .PPC.EMB.sbss0, then the link editor shall place in those 5 bits the value
0 (for 10); otherwise, the link shall fail. The least significant 16 bits of this field shall be set to the
address of the symbol plus the relocation entry’s r_addend value minus the appropriate base for

90

Chapter 4. Object Files

the symbol’s section: _sba_BASE_ for a symbol in .sdata or .sbss, _spa2_BASE_ for a symbol in
.PPC.EMB.sdata2 or .PPC.EMB.sbss2, or 0 for a symbol in .PPC.EMB.sdata0 or .PPC.EMB.sbss0.

Note: The source register in the ori, oris, xor, and xoris instructions (bits 6-10) are encoded
differently than the addi, addis, 1d, and st instructions (bits 11-15). This relocation type is
appropriate for add and 1d instructions, but not for or and xor instructions.

ATR-SPE
R_PPC_EMB_MRKREF

The symbol whose index is in r_info shall be in a different section from the section associated
with the relocation entry itself. The relocation entry’s r_offset and r_addend fields shall be
ignored. Unlike other relocation types, the link editor shall not apply a relocation action to a
location because of this type. This relocation type is used to prevent a link editor that does section
garbage collecting from deleting an important but otherwise unreferenced section.

ATR-SPE
R _PPC_EMB_BIT_FLD

The most significant 16 bits of the relocation entry’s r_addend field shall be a value between 0 and
31, representing a big-endian bit position within the entry’s 32-bit location (e.g., 6 means the sixth
most significant bit). The least significant 16 bits of r_addend shall be a value between 1 and 32,
representing a length in bits. The sum of the bit position plus the length shall not exceed 32. The
link editor shall replace bits starting at the bit position for the specified length with the value of the
symbol, treated as a signed entity.

ATR-SPE
R_PPC_EMB_RELSDA

The link editor shall set the 16-bits at the address pointed to by the relocation entry to the address of
the symbol whose index is in r_info plus the value of r_addend minus the appropriate base for
the section containing the symbol: _sSDA_BASE_ for a symbol in .sdata or .sbss, _sDa2_BASE_ for a
symbol in .PPC.EMB.sdata2 or .PPC.EMB.sbss2, or 0 for a symbol in .PPC.EMB.sdata0 or
.PPC.EMB.sbss0. If the symbol is not in one of those sections, the link shall fail.

91

Chapter 4. Object Files

ATR-TLS

4.15. Thread Local Storage ABI

The document ELF Handling for Thread-Local Storage (see Section 1.1) is the authoritative TLS ABI
specification that defines the context in which information in this 32-bit Power Architecture TLS ABI
must be viewed. In order to maintain congruence with that document, in this section the term module
refers to an executable or shared object since both are treated similarly.

4.15.1. TLS Background

Most C/C++ implementations support (as a proposed extension to the language) the keyword __thread
(the ISO C1X draft uses _Thread_local as the keyword, while C++0X uses thread_local)to be
used as a storage-class specifier in variable declarations and definitions of data objects with thread
storage duration. A variable declared in this manner is automatically allocated local to each thread and its
lifetime is defined to be the entire execution of the thread. Any initialization value is assigned once
before thread startup.

4.15.2. TLS Runtime Handling

A thread-local variable is completely identified by the module in which it is defined, along with the offset
of the variable relative to the start of the TLS block for the module. A module is referenced by its index
(an integer starting with 1, assigned by the run-time environment) into the Dynamic Thread Vector. The
offset of the variable is kept in the st_value field of the TLS variable’s symbol table entry.

The TLS data structures follow variant I of the ELF TLS ABI. For the 32-bit Power Architecture, the
specific organization of the data structures is as follows.

The Thread Control Block (TCB) is 8 bytes long, with its first 4 bytes containing the pointer to the
Dynamic Thread Vector (DTV). Modules that will not be unloaded will be present at startup time; the
TLS blocks for these are created consecutively and immediately follow the TCB. The offset of the TLS
block of an initially available module from the TCB remains fixed after program start.

The t1soffset (m) values for a module with index m, where m ranges 1 through M, M being the total
number of modules, are computed as follows.

tlsoffset (l) = round(l6, align(1l))
tlsoffset(m + 1) = round(tlsoffset(m) + tlssize(m), align(m + 1))

+ The function round () returns its first argument rounded up to the next multiple of its second
argument:

round(x, y) =y x ceiling(x / y)

+ The function ceiling () returns the smallest integer greater than or equal to its argument, where n
is an integer satisfying: n - 1 <x <=m:

ceiling(x) = n

92

Chapter 4. Object Files

In the case of Dynamic Shared Objects (DSO), TLS blocks are allocated on an as-needed basis, with the
details of allocation abstracted away by the ___t1s_get_addr () function which is used to retrieve the
address of any TLS variable.

The prototype for the __t1s_get_addr () function, is defined as follows.

typedef struct
{
unsigned long int ti_module;
unsigned long int ti_offset;
} tls_index;

extern void *__tls_get_addr (tls_index xti);

The Thread Pointer (TP) is held in 12 and is used to access the TCB. The TP is initialized to point
0x7000 bytes past the end of the TCB. The TP offset allows for efficient addressing of the TCB and up to
4K-8B of other thread library information (placed before the TCB).

The following diagram shows the region of memory before and after the TCB that can be efficiently
addressed by the TP:

Figure 4-4. Thread Pointer Addressable Memory

o[

Flib info-~TCB TLS Blocks
——0x1000B— 0x7000B OxB000B
*—4KB—BB——F—SB 2BKB 32KB

Each DTV pointer points 0x8000 bytes past the start of each TLS block. (For implementation reasons,
the actual value stored in the DTV may point to the start of a TLS block, however values returned by
accessor functions will be offset by 0x8000 bytes). This offset allows the first 64 KB of each block to be
addressed from a DTV pointer using fewer machine instructions.

Figure 4-5. TLS Block Diagram

+—ox70008 }-0x80008—- 0x80088—
TP

ol Lo T T

DTV [m]

TLS blocks for initially available modules ——TLS blocks for dynamically
loaded modules
Free

TLS[1] TLS[m]
64KEB

TLS[m] denotes the TLS block for the module with index m

DTV[m] denotes the DTV pointer for the module with index m

93

Chapter 4. Object Files

4.15.3. TLS Access Models

TLS data access is categorized into the following models:

* General Dynamic TLS Model

* Local Dynamic TLS Model

* [nitial Exec TLS Model

* Local Exec TLS Model

Examples for each access model are provided in the following TLS Model sub-sections.

For these examples, register r31 holds to the address of the symbol _GLOBAL_OFFSET_TABLE_ in the
Global Offset Table. A different register may be used for this purpose as well.

4.15.3.1. General Dynamic TLS Model

Given the following code fragment, to determine the address of the a thread-local variable x, the
__tls_get_addr () function is called with one parameter which is a pointer to a data object of type

tls_index.

extern __ thread int x;
&X;

Table 4-12. General Dynamic Initial Relocations

Code Sequence Relocation Symbol
addi 3,31, x@got@tlsgd R_PPC_GOT_TLSGDI16 X
bl __tls_get_addr(x@tlsgd) R_PPC_TLSGD X
R_PPC REL24 __tls_get_addr

Table 4-13. General Dynamic Outstanding Relocations

Code Sequence Relocation Symbol
GOTIn] R_PPC_DTPMOD32 X
GOT[n+1] R_PPC_DTPREL32 X

The relocation specifier @got@tlsgd causes the link editor to create a data object of type t1s_index in
the GOT. The address of this data object is loaded into the first argument register with the addi
instruction, and a standard function call is made.

4.15.3.2. Local Dynamic TLS Model

For the Local Dynamic TLS Model two different relocation sequences may be used, depending on the
size of the offset to the variable. For the following code sequence a different relocation sequence is used
for each variable.

static __ _thread int x1;
static __ _thread int x2;

&x1;

94

Chapter 4. Object Files

&x2;

Table 4-14. Local Dynamic Initial Relocations

Code Sequence Relocation Symbol

addi 3,31,x1 @got@tlsld R_PPC_GOT_TLSLDI16 x1

bl __tls_get_addr(x1 @tlsld) R_PPC_TLSLD x1
R_PPC_REL24 __tls_get_addr

addi 9,3,x1 @dtprel R_PPC_DTPRELI16 x1

addis 9,3,x2@dtprel @ha R_PPC_DTPREL16_HA x2

addi 9,9,x2 @dtprel @1 R_PPC_DTPRELI16_LO x2

Table 4-15. Local Dynamic Outstanding Relocations

Code Sequence Relocation Symbol
GOT][n] R_PPC_DTPMOD32 x1
GOT[n+1] 0

The relocation specifier @gor@1lsid in the first instruction causes the link editor to generate a
tls_index data object in the GOT with a fixed O offset. The code shown assumes that x1 is in the first
64k of the thread storage block, while x2 is not. To load the values of x1 and x2 instead of the address,
access int variables with the following.

Iwz 0,x1 @dtprel(3) R_PPC_DTPRELI16 x1

addis 9,3,x2@dtprel@ha R_PPC_DTPREL16_HA x2
lwz 0,x2 @dtprel @1(9) R_PPC_DTPREL16_LO x2

4.15.3.3. Initial Exec TLS Model

Given the following code fragment the relocation sequence in Table 4-16 is used for the Initial Exec TLS
Model.

extern __ _thread int x;

&X;

Table 4-16. Initial Exec Initial Relocations

Code Sequence Relocation Symbol
lwz 9,x@got@tprel(31) R_PPC_GOT_TPREL16 X
add 9,9 x@tls R_PPC_TLS X

95

Chapter 4. Object Files
Table 4-17. Initial Exec Outstanding Relocations

Code Sequence Relocation Symbol
GOT][n] R_PPC_TPREL32 X

The relocation specifier @ got@tprel in the first instruction causes the link editor to generate a GOT entry
with a relocation that the dynamic linker will replace with the offset for x relative to the thread pointer.
The relocation specifier x@1/s tells the assembler to use an r2 form of the instruction, i.e., add 9, 9,2 in
this case, and tag the instruction with a relocation that indicates it belongs to a TLS sequence. This
relocation specifier can be used later by the link editor when optimizing TLS code.

To read the contents of the variable instead of calculating its address, the add 9, 9, x@t1s instruction
might be replaced with 1wzx 0,9, x@t1ls

4.15.3.4. Local Exec TLS Model

Given the following code fragment, two different relocation sequences may be used, depending on the
size of the offset to the variable. The sequence in Table 4-18 handles offsets within 60KB relative to the
end of the TCB (where 12 points 28KB past the end of the TCB, which is immediately before the first
TLS block). The sequence in Table 4-19 handles offsets past 60KB relative to the end of the TCB..

static _ _thread int x;
&X;

The following diagram illustrates which sequence is used:

Figure 4-6. Local Exec TLS Model Sequences

s

Flib info--TCB TLS Blocks

—0x1000B (4K)—

0x7000B (28K)—

0x8000B (32K)

6OKB
Sequence 1 used Sequence 2 used—

Table 4-18. Local Exec Initial Relocations (Sequence 1)

Code Sequence Relocation Symbol
addi 9,2,x1 @tprel R_PPC_TPREL16 X

Table 4-19. Local Exec Initial Relocations (Sequence 2)

Code Sequence Relocation Symbol
addis 9,2,x2@tprel @ha R_PPC_TPREL16_HA X
addi 9,9,x2 @tprel @1 R_PPC_TPREL16_LO X

96

Chapter 4. Object Files

4.15.4. TLS Link Editor Optimizations

When the link editor knows if the code being generated is for an executable file or for a shared object
file, or when a reference to a thread-local variable in the executable is unconditionally satisfied by a
definition in the executable itself, the link editor can optimize the computation of a variable’s address
provided the compiler emits code sequences as described.

The following TLS link editor transformations are provided as optimizations to convert between specific
TLS Access Models:

* General Dynamic to Initial Exec
e General Dynamic to Local Exec
* Local Dynamic to Local Exec

e Initial Exec to Local Exec

4.15.4.1. General Dynamic to Initial Exec

Table 4-20. General Dynamic to Initial Exec Initial Relocations

Code Sequence Relocation Symbol

addi 3,31, x@got@tlsgd R_PPC_GOT_TLSGD16 X

bl __tls_get_addr(x@tlsgd) R_PPC_TLSGD X
R_PPC_REL24 __tls_get_addr

Table 4-21. General Dynamic to Initial Exec Outstanding Relocations

Code Sequence Relocation Symbol
GOTIn] R_PPC_DTPMOD32 X
GOT[n+1] R_PPC_DTPREL32 X

The preceding relocations are replaced by the following relocations.

Table 4-22. General Dynamic to Initial Exec Replacement Initial Relocations

Code Sequence Relocation Symbol
Iwz 3,x@got@tprel(31) R_PPC_GOT_TPRELI16 X
add 3,3,2

Table 4-23. General Dynamic to Initial Exec Replacement Outstanding Relocations

Code Sequence Relocation Symbol
GOT][n] R_PPC_TPREL32 X

97

Chapter 4. Object Files

4.15.4.2. General Dynamic to Local Exec

Table 4-24. General Dynamic to Local Exec Initial Relocations

Code Sequence Relocation Symbol
addi 3,31,x@got@tlsgd R_PPC_GOT_TLSGDI16 X
bl __tls_get_addr(x@tlsgd) R_PPC_TLSGD X
R_PPC REL24 __tls_get_addr

Table 4-25. General Dynamic to Local Exec Outstanding Relocations

Code Sequence Relocation Symbol
GOTIn] R_PPC_DTPMOD32 X
GOT[n+1] R_PPC_DTPREL32 X

The preceding initial relocations are replaced by the following initial relocations. This optimization does

not replace the preceding outstanding relocations.

Table 4-26. General Dynamic to Local Exec Replacement Initial Relocations

Code Sequence Relocation Symbol
addis 3,2, x@tprel @ha R_PPC_TPREL16_HA X
addi 3,3,x@tprel @1 R_PPC_TPREL16_LO X

4.15.4.3. Local Dynamic to Local Exec

Under this TLS linker optimization, the function call is replaced with an equivalent code sequence. As
shown, the following dtprel sequences are left unchanged.

Table 4-27. Local Dynamic To Local Exec Initial Relocations

Code Sequence Relocation Symbol

addi 3,31,x1 @got@tlsld R_PPC_GOT_TLSLD16 x1

bl __tls_get_addr(x1 @tlsld) R_PPC_TLSLD x1
R_PPC_REL24 __tls_get_addr

addi 9,3,x1 @dtprel R_PPC_DTPRELI16 x1

addis 9,3,x2@dtprel @ha R_PPC_DTPREL16_HA x2
addi 9,9,x2 @dtprel @1 R_PPC_DTPRELI16_LO x2

Table 4-28. Local Dynamic To Local Exec Outstanding Relocations

Code Sequence Relocation Symbol
GOT][n] R_PPC_DTPMOD32 x1
GOT[n+1]

98

Chapter 4. Object Files

The preceding relocations are replaced by the following relocations. This optimization does not replace
the preceding outstanding relocations.

Table 4-29. Local Dynamic To Local Exec Replacement Initial Relocations

Code Sequence Relocation Symbol

addis 3,2,L@tprel @ha R_PPC_TPREL16_HA link editor generated local
symbol

addi 3,3,L@tprel @1 R_PPC_TPREL16_LO link editor generated local
symbol

addi 9,3,x1 @dtprel R_PPC_DTPRELI16 x1

addis 9,3,x2@dtprel@ha R_PPC_DTPREL16_HA x2
addi 9,9,x2 @dtprel @1 R_PPC_DTPREL16_LO X2

The link editor generated local symbol points to the start of the thread storage block plus 0x7000 bytes.
In practice, a section symbol with a suitable offset will be used.

4.15.4.4. Initial Exec to Local Exec

Table 4-30. Initial Exec to Local Exec Initial Relocations

Code Sequence Relocation Symbol
lwz 9,x@got@tprel(31) R_PPC_GOT_TPREL16 X
add 9,9.x @tls R_PPC64_TLS X

Table 4-31. Initial Exec to Local Exec Outstanding Relocations

Code Sequence Relocation Symbol
GOT][n] R_PPC_TPREL32 X

The preceding relocations are replaced by the following relocations. This optimization does not replace
the preceding outstanding relocations.

Table 4-32. Initial Exec to Local Exec Replacement Initial Relocations

Code Sequence Relocation Symbol
addis 9,2,x@tprel @ha R_PPC_TPREL16_HA X
addi 9,9, x @tprel @1 R_PPC_TPREL16_LO X

Other sizes and types of thread-local variables may use any of the X-form indexed load or store
instructions. The lwz and add instruction, in this case, can have interleaved code inserted by the compiler.

Table 4-33 shows how to access the contents of a variable using the X-form indexed load and store
instructions.

99

Chapter 4. Object Files

Table 4-33. Initial Exec to Local Exec X-form Initial Relocations

Code Sequence Relocation Symbol
Iwz 9,x@got@tprel(31) R_PPC_GOT_TPREL16 X

Ibzx 10,9,x @tls R_PPC_TLS

addi 10,10,1

stbx 10,9,x @tls R_PPC_TLS X

Table 4-34. Initial Exec to Local Exec X-form Outstanding Relocations

Code Sequence Relocation Symbol
GOT][n] R_PPC_TPREL32 X

The preceding relocations are replaced by the following relocations. This optimization does not replace
the preceding outstanding relocations.

Table 4-35. Initial Exec to Local Exec X-form Replacement Initial Relocations

Code Sequence Relocation Symbol
addis 9,2,x@tprel @ha R_PPC_TPREL16_HA X

Ibz 10,x @tprel @1(9) R_PPC_TPREL16_LO X

addi 10,10,1

stb 10,x @tprel @1(9) R_PPC_TPREL16_LO X

4.15.5. ELF TLS Definitions

The result of performing a relocation for a TLS symbol is module ID and its offset within the TLS block.
These are then stored in the Section 5.2.3 and later obtained by the dynamic linker at run-time and passed
to__tls_get_addr (), which returns the address for the variable for the current thread.

The following notations are use to the explain the expressions in the Table 4-36:

S

Represents the value of the symbol whose index resides in the relocation entry.
A

Represents the addend used to compute the value of the relocatable field.
tp

The value of the thread pointer in general-purpose register 2 (12).
TLS_TP_OFFSET

The constant value 0x7000, representing the offset (in bytes) of the location the thread pointer is
initialized to point to, relative to the start of the thread local storage for the first initially available
module.

TCB_LENGTH

The constant value 0x8, representing the length of the TCB in bytes.

100

Chapter 4. Object Files

tchb

Represents the base address of the TCB.

tcb = (tp - (TLS_TP_OFFSET + TCB_LENGTH))
dtv

Represents the base address of the DTV.

dtv = tcb[0]
dtpmod

Represents the load module index of the load module that contains the definition of the symbol
being relocated and is used to index the DTV.

dtprel
Represents the offset of the symbol being relocated relative to the value of dtv[dtpmod].
dtv[dtpmod] + dtprel = (S + A)
tprel
Represents the offset of the symbol being relocated relative to TP.
tp + tprel = (S + A)
tlsgd

Allocates two contiguous entries in the GOT to hold a tls_index structure, with values dtpmod and
dtprel, and computes the offset of the first entry within the GOT.

If n is the offset computed:
_GLOBAIL_OFFSET_TABLE_[n] = dtpmod

_GLOBAL_OFFSET_TABLE_[n + 1] = dtprel

The call to __tls_get_addr () would happen as:

__tls_get_addr ((tls_index *) & GLOBAL_OFFSET_TABLE_[n])

tlsld

Allocates two contiguous entries in the GOT to hold a tls_index structure, with values dtpmod and
zero, and computes the offset of the first entry within the GOT.

If n is the offset computed:
_GLOBAL_OFFSET_TABLE_[n] = dtpmod

_GLOBAL_OFFSET_TABLE_[n+ 1]=0

The call to __tls_get_addr () would happen as:

__tls_get_addr ((tls_index *) & GLOBAL_OFFSET_TABLE_[n])

101

Chapter 4. Object Files

tprelg
Allocates an entry in the GOT with value tprel, and computes the offset of the entry within the GOT.
If n is the offset computed:

_GLOBAL_OFFSET_TABLE_[n] = tprel

The value of tprel is loaded into a register from the location (_GLOBAIL_OFFSET_TABLE_ + n) to
be used in an r2 form instruction.

Note: Relocations not using the #ha(), #hi(), and #lo() modifiers (those flagged with and asterisk(*)
will trigger a relocation failure if the value computed does not fit in the field specified.

102

Table 4-36. TLS Relocation Table

Chapter 4. Object Files

Relocation Name Value Field Expression
R_PPC_TLS 67 none none
R_PPC_DTPMOD32 68 word32 dtpmod
R_PPC_TPRELI16 69 half16* tprel
R_PPC_TPREL16_LO 70 half16 #lo(tprel)
R_PPC_TPRELI16_HI 71 half16 #hi(tprel)
R_PPC_TPREL16_HA 72 half16 #ha(tprel)
R_PPC_TPREL32 73 word32 tprel
R_PPC_DTPRELI16 74 half16* dtprel
R_PPC_DTPRELI16_LO 75 half16 #lo(dtprel)
R_PPC_DTPRELI16_HI 76 half16 #hi(dtprel)
R_PPC_DTPREL16_HA 77 half16 #ha(dtprel)
R_PPC_DTPREL32 78 word32 dtprel
R_PPC_GOT_TLSGD16 79 half16* tlsgd
R_PPC_GOT_TLSGD16_LO 80 half16 #lo(tlsgd)
R_PPC_GOT_TLSGDI16_HI 81 half16 #hi(tlsgd)
R_PPC_GOT_TLSGDI16_HA 82 half16 #ha(tlsgd)
R_PPC_GOT_TLSLDI16 83 half16* tlsld
R_PPC_GOT_TLSLD16_LO 84 half16 #lo(tlsld)
R_PPC_GOT_TLSLD16_HI 85 half16 #hi(tlsld)
R_PPC_GOT_TLSLD16_HA 86 half16 #ha(tlsld)
R_PPC_GOT_TPREL16 87 half16* tprelg
R_PPC_GOT_TPREL16_LO 88 half16 #lo(tprelg)
R_PPC_GOT_TPREL16_HI 89 half16 #hi(tprelg)
R_PPC_GOT_TPREL16_HA 90 half16 #ha(tprelg)
91
Reserved for future TLS
ABI use.
94
R_PPC_TLSGD 95 none none
R_PPC_TLSLD 96 none none
97
Reserved for future TLS
ABI use.
100

103

Chapter 4. Object Files

TLS Relocation Descriptions

R _PPC_TLS
R_PPC_TLSGD
R_PPC_TLSLD

These are marker relocations that tie together instructions in TLS code sequences. They allow the
link editor to reliably optimize TLS code. R_PPC_TLSGD and R_PPC_TLSLD shall be emitted
immediately before their associated __t1s_get_addr call relocation.

ATR-TLS

104

Chapter 5. Program Loading and Dynamic
Linking

5.1. Program Loading

A number of criteria constrain the mapping of an executable file or shared object file to virtual memory
segments. During mapping, the operating system may employ delayed physical reads to improve
performance, which necessitates that file offsets and virtual addresses are congruent, modulo the page
size.

Page size must be less than or equal to the operating system implemented congruency. This ABI defines
64 KB congruency as the minimum allowable. To maintain interoperability between operating system
implementations, 64K congruency is recommended.

Note: There is historical precedence for 64 KB congruency in that there is synergy with the Power
Architecture instruction set whereby high and high adjusted relocations can be easily performed
using addi or addis instructions.

The value of the p_align member of the program header struct must be 0x10000 which indicates that
segments are aligned on 64 KB boundaries. The size of each segment is defined to be a positive, integral
power of two, but no less than 64 KB.

The following program header information will illustrate an application that is mapped with a base
address of 0x10000000:

Table 5-1. Program Header Example

Header Member Text Segment Data Segment
p_type PT_LOAD PT_LOAD
p_offset 0x000000 0x000af0
p_vaddr 0x10000000 0x10010af0
p_paddr 0x10000000 0x10010af0
p_filesz 0x00af0 0x00124
p_memsz 0x00af0 0x00128

p_flags R-E RW-

p_align 0x10000 0x10000

Note: For the PT_LOAD entry describing the data segment, the p_memsz may be greater than the
p_filesz. The difference is the size of the .bss section. On implementations that use virtual memory
file mapping, only the portion of the file between the .data p_offset (rounded down to the nearest
page) to p_offset + p_filesz (rounded up to the next page size) is included. If the distance
between p_offset + p_filesz and p_offset + p_memsz Crosses a page boundary then additional
memory must be allocated out of anonymous memory to include data through p_vaddr + p_memsz.

Table 5-2 demonstrates a typical mapping of file to memory segments.

105

Chapter 5. Program Loading and Dynamic Linking

Table 5-2. Memory Segment Mappings

File Section Virtual Address
0x0 header 0x10000000
0x100 .text 0x10000100
Oxaf0 .data 0x10010af0
Oxcl4 .bss 0x10010c14
0Oxcl8 .dataend 0x10010c18

Operating systems typically enforce memory permission on a per-page granularity. This ABI maintains
that the memory permissions are consistent across each memory segment when a File image is mapped
to a process Memory Segment. The Text Segment and Data Segment require differing memory
permissions. To maintain congruency of file offset to virtual address modulo the page size the system
will map the file region holding the overlapped text and data twice at different virtual addresses for each
segment (see Figure 5-1).

ATR-SECURE-PLT

Under the Secure-PLT ABI, certain sections of the Data Segment may be protected as read-only after the
pages are mapped and relocations are resolved. See Section 5.2.5.2 for more information.

106

Chapter 5. Program Loading and Dynamic Linking

Figure 5-1. File Image to Process Memory Image Mapping

contiguous
file image
pages

9

Process Memory Image

#
-
#
#

File Image <~

-

Text
.
S
R
s
Data .7
-
residual
application

static data

headers

7

text

undefined

undefined

.data

.bss
zeroed

undefined

—

% Text Segment

64 KB
CONgruency
sap

}' Data Segment

allocate additional
page(s) as needed
per p_memsz

w7

As a result of this mapping there can be up to four pages of impure text or data in the virtual memory
segments for the application as described in the following list:

1. ELF header information, program headers, and other information will precede the .text section and

reside at the beginning of the Text Segment.

2. The last memory page of the Text Segment can contain a copy of the partial, first file image Data
page as an artifact of page faulting the last file image Text page from the file image to the Text
Segment while maintaining the required offsets as shown in Figure 5-1.

107

Chapter 5. Program Loading and Dynamic Linking

3. Likewise, the first memory page of the Data Segment may contain a copy of the partial, last file
image Text page as an artifact of page faulting the first file image Data page from the file image to
the Data Segment while maintaining the required offsets.

4. The last faulted Data Segment memory page may contain residual data from the last file image Data
page that is not part of the actual file image. The system is required to zero this residual memory;
after that page is mapped to the Data Segment. If the application requires static data, the remainder
of this page is used for that purpose. If the static data requirements exceed the remnant left in the last
faulted memory page, additional pages shall be mapped from anonymous memory and zeroed.

Note: The handling of the contents of the first three impure pages is undefined by this ABI.

5.1.1. Addressing Models

When mapping an executable file or shared object file to memory the system can utilize the following
addressing models. Each application is allocated its own virtual address space.

- Traditionally executable files have been mapped to virtual memory using an absolute addressing
model, where the mapping of the sections to segments uses the section p_vaddr specified by the ELF
header directly as an absolute address.

+ The Position-Independent Code (PIC) addressing model allows the file image Text of an executable
file or shared object file to be loaded into the virtual address space of a process at an arbitrary starting
address chosen by the kernel loader or program interpreter (dynamic linker).

Note: Shared objects need to use the PIC addressing model so that all references to global
variables go through the Global Offset Table.

Note: Position-independent executables should use the PIC addressing model.

ATR-TLS

5.2. Dynamic Linking

5.2.1. Program Interpreter

For dynamic linking the standard program interpreter is /lib/ld.so.1.

5.2.2. Dynamic Section

The dynamic section provides information used by the dynamic linker to manage dynamically loaded
shared objects, including relocation, initialization, and termination when loaded or unloaded, resolving
dependencies on other shared objects, resolving references to symbols in the shared object, and
supporting debugging. The following dynamic tags are relevant to this processor specific ABI:

108

Chapter 5. Program Loading and Dynamic Linking

DT_PLTGOT

The d_ptr member of this dynamic tag holds the address of the first byte of the Procedure Linkage
Table.

DT_JMPREL

The d_ptr member of this dynamic tag points to the first byte of the table of relocation entries
which have a one-to-one correspondence with PLT entries. Any executable or shared object with a
PLT must have DT_JMPREL. A shared object containing only data will not have a PLT and thus
will not have DT_JMPREL.

5.2.3. Global Offset Table

To support position independent code, a Global Offset Table (GOT) shall be constructed by the link
editor in the Data Segment when linking code containing any of the various R_PPC_GOT* relocations or
when linking code that references the _GLOBAL_OFFSET_TABLE_ symbol. The link editor shall emit
dynamic relocations as appropriate for each entry in the GOT. At runtime, the dynamic linker will apply
these relocations once addresses of all memory segments are known (and thus the addresses of all
symbols). At that point, the GOT may be considered to be an array of absolute addresses, but note that
this ABI does not preclude the GOT containing nonaddress entries.

Absolute addresses are generated for all GOT relocations by the dynamic linker before giving control to
any process image code. The dynamic linker is free to choose different memory segment addresses for
the executable or shared objects in a different process image. After the initial mapping of the process
image by the dynamic linker, memory segments reside at fixed addresses for the life of a process.

The symbol _GLOBAL_OFFSET_TABLE_ may be used to access the GOT or in GOT-relative
addressing to other data constructs, such as the Procedure Linkage Table. The symbol may be offset by
0x8000 bytes from the start of the .got section. This offset allows the use of the full (64KB) signed range
of 16-bit displacement fields by using both positive and negative subscripts into the array of addresses.

ATR-SECURE-PLT

5.2.3.1. Global Offset Table Under The Secure-PLT ABI

Under the Secure-PLT ABI, a writable segment cannot be executable and an executable segment cannot
be writable. Therefore, the GOT shall be nonexecutable. A program may calculate the address of the
GOT by using the position independent code shown in Table 4-9.

Figure 5-2. Loading the Address of _GLOBAL_OFFSET_TABLE_ Under the Secure-PLT ABI

bcl 20,31,1f

1: mflr 30
addis 30,30, (got—1b) @ha
addi 30,30, (got-1b)@1

In Figure 5-2 the computed address of the _GLOBAL_OFFSET_TABLE_ symbol is placed in r30.

Using r30 to hold the address of the _GLOBAL_OFFSET_TABLE_ symbol is the current convention used
by the compiler and link-editor and is only required for nonleaf routines which use the PIC addressing

109

Chapter 5. Program Loading and Dynamic Linking

model. Leaf routines or code not using the PIC addressing model may use any available unreserved
general-purpose register to hold the address of the _GLOBAL_OFFSET_TABLE_ symbol. See Section
5.2.5.2 for more information on this convention.

Under the Secure-PLT ABI three words in the Global Offset Table are reserved:

_GLOBAL_OFFSET_TABLE_[0]

Initialized to the link-time address of the .dynamic section by the link editor.
_GLOBAL_OFFSET_TABLE_[1]

Initialized to the address of d1_runtime_resolve by the dynamic linker.
_GLOBAL_OFFSET_TABLE_[2]

Reserved for use by the dynamic linker. This entry holds a parameter of dl_runtime_resolve.

ATR-SECURE-PLT

ATR-BSS-PLT

5.2.3.2. Global Offset Table Under The BSS-PLT ABI
Under the BSS-PLT ABI four words in the Global Offset Table are reserved:

_GLOBAL_OFFSET_TABLE_[-1]
Holds the b1r1l instruction.
_GLOBAL_OFFSET_ TABLE_[0]

Initialized by the link editor to the address of the .dynamic section. The dynamic linker uses this
address (by referencing the symbol _DYNAMIC, which holds the address of the .dynamic section)
to determine the run-time load address of shared objects and of the dynamic linker itself.

_GLOBAL_OFFSET_TABLE_[1]
Reserved for future use.
_GLOBAL_OFFSET_TABLE_[2]
Reserved for future use.
The program text in Figure 5-3 may be used to load the address of the _GLOBAIL_OFFSET_TABLE_
symbol into a general purpose register (in this case r31).

Figure 5-3. Loading the Address of _GLOBAL_OFFSET_TABLE_ Under the BSS-PLT ABI

bl _GLOBAL_OFFSET_TABLE_-4@local
mflr r31

110

Chapter 5. Program Loading and Dynamic Linking

ATR-BSS-PLT

5.2.4. Function Addresses

The following requirements concern function addresses.

When referencing a function address:

Intraobject executable or shared object function address references may be resolved by the dynamic
linker to the absolute virtual address of the symbol.

ATR-SECURE-PLT

Function address references from within the executable file to a function defined in a shared object
file are resolved by the link editor to the .text section address of the Secure-PLT call stub for that
function within the executable file.

ATR-BSS-PLT

Function address references from within the executable file to a function defined in a shared object
file are resolved by the link editor to the address of the PLT entry for that function within the
executable file.

When comparing function addresses:
The address of a function shall compare to the same value in executables and shared objects.

For intraobject comparisons of function addresses within the executable or shared object the link
editor may directly compare the absolute virtual addresses.

ATR-SECURE-PLT

For a function address comparison where an executable references a function defined in a shared
object, the link editor will place the address of a .text section Secure-PLT call stub for that function
in the corresponding dynamic symbol table entry’s st_value field (see Section 4.6.1).

ATR-BSS-PLT

For a function address comparison where an executable references a function defined in a shared
object, the link editor will place the address of the PLT entry for that function in the function’s
dynamic symbol table entry’s st_value field (see Section 4.6.1).

111

Chapter 5. Program Loading and Dynamic Linking

When the dynamic linker loads shared objects associated with an executable and resolves any
outstanding relocations into absolute addresses it will search the dynamic symbol table of the
executable for each symbol that needs to be resolved.

If it finds the symbol and the st_value of the symbol table entry is nonzero it shall use the address
indicated in the st_value entry as the symbol’s address. If the dynamic linker does not find the
symbol in the executable’s dynamic symbol table, or the entry’s st_value member is zero the
dynamic linker may consider the symbol as undefined in the executable file.

5.2.5. Procedure Linkage Table

When the link editor builds an executable file or shared object file it doesn’t know the absolute address of
undefined function calls; therefore, it can’t generate code to directly transfer execution to another shared
object or executable. For each execution transfer to an undefined function call in the file image the link
editor places a relocation against an entry in the Procedure Linkage Table (PLT) of the executable or
shared object that corresponds to that function call.

Additionally, for all nonstatic functions with standard (nonhidden) visibility in a shared object the link
editor will invoke the function through the PLT, even if the shared object defines the function. The same
is not true for executables.

The link editor knows the number of functions invoked via the PLT and it reserves space for an
appropriately sized .plt section.

A unique PLT shall be constructed for the executable and each dependent shared object in the Data
segment of the process image at object load time by the dynamic linker using the information about the
.plt section stored in the file image. The individual PLT entries are populated by the dynamic linker using
one of the following binding methods. Execution can then be redirected to a dependent shared object or
executable.

Lazy Binding

The lazy binding method is the default. It delays the resolution of a PLT entry to an absolute address
until the function call is made the first time. The benefit of this method is that the application
doesn’t pay the resolution cost until the first time it needs to call the function, if at all.

Immediate Binding

The immediate binding method will resolve the absolute addresses of all PLT entries in the
executable and dependent shared objects at load time, prior to passing execution control to the
application. The environment variable LD_BIND_NOW may be set to a nonnull value to signal the
dynamic linker that immediate binding is desired at load time, before control is given to the
application.

For some performance sensitive situations it may be better to pay the resolution cost to populate the
PLT entries upfront rather than during execution.

ATR-BSS-PLT

112

Chapter 5. Program Loading and Dynamic Linking

5.2.5.1. BSS Procedure Linkage Table

Under the BSS-PLT ABI, PLT entries hold executable stubs which transfer program control from the
executable or shared object to the requested function once the absolute address of the function has been
calculated by the dynamic linker.

The PLT is created in the .plt section of the Data segment at load time by the dynamic linker. It is
composed of the following parts:

« The first 18 words (72 bytes) are reserved for the dynamic linker. This space may be used for
trampoline code that transfers execution to the runtime resolver in order to resolve PLT relocations
into absolute addresses.

« For PLT entries 1 through 8192 the link editor reserves two words.
« For PLT entries 8193 through n the link editor reserves four words.
« The link editor reserves an additional word for each entry in the PLT following the actual entries.

Figure 5-4 shows a possible rule conforming example implementation of a .plt section after an executable
or shared object is loaded but before outstanding PLT entry relocations are resolved. This example uses a
trampoline to branch to the dynamic linker’s runtime resolver for resolving outstanding PLT entries. This
example is for demonstration purposes only since the exact method is not mandated by the ABI.

Figure 5-4. Example BSS-PLT .plt Section Implementation

.plt
Use when the plt entry target address exceeds +/- 32MB.
Convert the index into the .plt_datawords array held in
rll into an actual address.
.plt_farcall: addis rll,rll, .plt_datawords@ha
1wz rll, .plt_datawords@l (rll)
mtctr rll
bectr
nop
nop

Subtract .plt_datawords for long entries
.plt_longbranch:addis rll,rll,-.plt_datawords@ha
addi rll,rll,-.plt_datawords@l

Multiply index of the entry in rll by 3
.plt_trampoline:rlwinm rl2,r11,1,0,30

Add it to the index in rll which will then hold the

relocation offset of the corresponding entry in the

relocation table.

add rll,rl2,rll

Load the address of dl_runtime_resolve into rl2

1i rl2,dl_runtime_resolve@l

addis rl2,r12,dl_runtime_resolve@ha

mtctr rlz

Get the address of the dynamic linker’s link map in

order to later locate the symbol table for the object

1i rl2,link_map@l

addis rl2,rl2,1link_map@ha

113

Chapter 5. Program Loading and Dynamic Linking

Pass execution to the runtime resolver code.
bctr
nop
nop

Each entry in .plt_n loads the index of the
entry into the PLT entry list into rll

.plt_1

1i rll, 4x0

b .plt_trampoline

.plt_1

1i rll,4xi

b .plt_trampoline

Entries 8193 - n use every other slot due to

the extra instructions required for branching.
.plt_8193

lis rll,8193x44.plt_datawords@ha
lwzu rl2,8193x44.plt_datawords@l (rll)
b .plt_longbranch

bectr

.plt_n

1lis rll,nx44.plt_datawords@ha

lwzu rl2,nx44.plt_datawords@l (rl1l)

b .plt_longbranch

bctr

.plt_datawordsl
.plt_datawords: nop

.plt_datawordsi
nop

.plt_datawords8193
nop

.plt_datawordsn
nop

The address of relocation entries 1 through 8192 are close enough to the address of the runtime resolver
trampoline .plt_trampoline to use a relative branch. Relocations 8193 through » must use additional
instructions to reach the trampoline code. As a result PLT entries 8193 through n consist of four words
rather than two. These entries branch to .plt_longbranch which cascades into the trampoline code.

Note: there are exactly 18 instructions between .p1t and the first PLT entry indicated by .p1t_1.
These 18 instructions (including nop instructions) correspond with the space reserved at the head of
the plt section for the dynamic linker trampolines. Following the .p1t_n entry there are exactly n
word entries in .plt_datawords.

114

Chapter 5. Program Loading and Dynamic Linking

Note: In the case where the address of the runtime resolver is too far away from the
.plt_trampoline to use a relative branch the trampoline code may need to perform additional
instructions to pass control to the resolver. This is not shown in the Figure 5-4

When the instructions in a PLT entry are executed for the first time they pass execution to the dynamic
linker’s runtime resolver code. The resolver will attempt to find the absolute virtual address of the
function associated with the PLT slot and populate the entry with the address.

The DT_JMPREL entry of the _DYNAMIC array to holds the address of the relocation table of the shared
object or executable. Since PLT entries don’t have symbol names attached to them the dynamic linker
must find the symbol name. There is a one to one correspondence between PLT entries and relocation
entries and the dynamic linker uses an offset into the relocation table (held in r11 in Figure 5-4),
corresponding to the PLT entry, to find the relocation entry.

The relocation table contains R_PPC_JMP_SLOT relocations. Each of these relocations contain an offset
to the corresponding PLT entry from the start of the shared object or executable followed by the index
into the dynamic symbol table for the symbol. The dynamic linker uses this symbol table entry to look up
the name of the symbol in a dependent shared library or executable.

After the dynamic linker has resolved the absolute address of the function corresponding to a PLT entry
subsequent execution of the PLT entry will result in control passing directly to the target function either
directly or indirectly through the .p1t_farcall trampoline.

Figure 5-5 shows an example of how the PLT entries for functions namel (corresponding to PLT slot 1),
name?2 (corresponding to PLT slot 2), name8193 (corresponding to PLT slot 8193), and name8194 have
been resolved by the dynamic linker after executing the runtime resolver (where [stale] is a comment
which indicates that these memory locations in the .plt retained their content after the resolver has run
but are unreachable for execution).

Figure 5-5. Example BSS-PLT Entries Post Resolution

.plt_1

b <absolute address of namel>

b .plt_trampoline # [stale]
.plt_2

11 rll,4x2

b .plt_farcall

.plt_8193

b <absolute address of name8193>

lwzu rl2,8193x84.plt_datawords@l (rll) # [stale]
b .plt_longbranch # [stale]

bctr # [stale]

.plt_8194

1i rll,4x8194
b .plt_farcall
b .plt_longbranch # [stale]
bctr # [stale]
.plt_datawordsl

.plt_datawords: nop

.plt_datawords2

115

Chapter 5. Program Loading and Dynamic Linking
<absolute address name2>

.plt_datawords8193
nop

.plt_datawords8194
<absolute address of name8194>

The following list explains the resolution of four different PLT entry examples shown in Figure 5-5.

namel

The address of function namel is within = 32 MB of the address of the .p1t_1 PLT entry such that
a relative branch to absolute virtual address of namel is possible.

name2

The address of function name?2 is beyond £ 32 MB of the address of the .p1t_2 PLT entry;
therefore, a relative branch to .p1t_2 is impossible so a relative branch to the .plt_farcall
trampoline is made which loads the absolute virtual address of name2 from .plt_datawords2
where it was placed by the dynamic linker into the count register. The bctr instruction is executed to
pass control to name2.

name8193

The address of function name8193 within £ 32 MB of the address of the .p1t_8193 PLT entry;
therefore a relative branch to the absolute virtual address of name8193 is possible.

name8194

The address of function name8194 is beyond + 32 MB of the address of the .p1t_8194 PLT entry;
therefore, a relative branch to .p1lt_8194 is impossible so a relative branch to the .plt_farcall
trampoline is made which loads the absolute virtual address of name8194 from
.plt_datawords8194 where it was placed by the dynamic linker into the count register. The bctr
instruction is executed to pass control to name8194.

ATR-BSS-PLT

ATR-SECURE-PLT

5.2.5.2. Secure Procedure Linkage Table

Under the Secure-PLT ABI, PLT entries corresponding to function calls hold absolute addresses of those
calls that are calculated by the dynamic linker. These PLT entries are nonexecutable and an executable
fragment in the object .text section uses the absolute addresses in the PLT entries as the target for indirect
function invocation.

Procedure Linkage Table (PLT) support under the Secure-PLT ABI is split into the following:

« The .plt section, residing in the Data Segment, contains an array of function addresses.

116

Chapter 5. Program Loading and Dynamic Linking

« Call stubs, residing in the .text section, use index relative addressing to load an absolute address of a
function from a specific .plt slot.

« The .glink, residing in the .text section, is a symbol resolver stub.

The .glink and call stubs are generated by the link editor and placed in the .text section. The call stubs
need not be adjacent to one another or unique, and they can be scattered throughout the text segment so
that they can be reached with a branch and link instruction. The .plt section shall be allocated by the
dynamic linker in the Data Segment.

The details of the call stub and .glink implementation are left to the link editor except for how the symbol
resolver stub interfaces with the dynamic linker for lazy PLT resolution. Upon initialization by the
dynamic linker, every .plt slot holds the address of the symbol resolver stub that is located in the .glink.

The symbol resolver stub shall call the d1_runtime_resolve () function specified by
_GLOBAL_OFFSET_TABLE_ [1] with rl1 set to the PLT relocation offset, and r12 set to the value of
_GLOBAL_OFFSET_TABLE_[2].

The PIC call stub sequence requires that the compiler ensure that the register used to hold the
_GLOBAL_OFFSET_TABLE_ pointer is set before any calls are made from the PLT. The current
convention between the compiler and link editor is that r30 be used for this purpose. This is a change
from the BSS-PLT ABI which only required GOT addressing to access static storage.

A possible implementation for PIC code follows, where 7 is the nth call stub.

If (plt +(n - 1) x 4 - got) is less than 32 KB the following PIC call stub implementation may be used.

lwz 11, (plt + (n — 1) x 4 — got) (30)
mtctr 11
bctr

Otherwise, the following PIC call stub implementation may be used for greater addressability.

addis 11,30, (plt + (n — 1) x 4 - got)(@ha
lwz 11, (plt + (n - 1) x 4 - got)@1(1l1)
mtctr 11

bctr

For a PIC .glink the following implementation may be used.

A table of branches, one for each plt entry.
The idea is that the plt call stub loads ctr (and rll) with these

addresses, so (rll - res_0) gives the plt index x 4.
res_0: b PLTresolve
res_1: b PLTresolve

Some number of entries towards the end can be nops
res_n_m3: nop

res_n_m2: nop

res_n_ml:

PLTresolve:

addis 11,11, (1f-res_0) @ha
mflr O

becl 20,31,1f

1: addi 11,11, (1lb-res_0)@Q1
mflr 12

117

Chapter 5. Program Loading and Dynamic Linking

mtlr O

sub 11,11,12 # rll = index x 4

addis 12,12, (got+4-1b) @ha

lwz 0, (got+4+4-1b)@1(12) # got[l] address of dl_runtime_resolve
lwz 12, (got+8-1b)@1(12) # got[2] contains the map address
mtctr O

add 0,11,11

add 11,0,11 # rll = index x 12 = reloc offset.

bctr

For non-PIC code, r30 will not hold the GOT pointer; so the stubs must be different, as shown in the
following implementation.

For a non-PIC call stub the following implementation may be used.

lis 11, (plt4(i-1) x4)@ha
lwz 11, (plt+(i-1)x4)@1(11)
mtctr 11

bctr

For a non-PIC .glink the following implementation may be used.

res_0: b PLTresolve
res_1: b PLTresolve

res_n_m3: nop
res_n_m2: nop
res_n_ml:

NonPIC_PLTresolve:

lis 12,got+4@ha
addis 11,11, -res_0@ha
lwz 0,got+44@1(12)
addi 11,11,-res_0@L
mtctr O

add 0,11,11

lwz 12,got+48(12)

add 11,0,11

bctr

The .plt will be a loaded section following the .got, consisting of an array of addresses. There will also be
an array of R_PPC_JMP_SLOT relocations in .rela.plt, with a one-one correspondence between
elements of each array. Each R_PPC_JMP_SLOT reloc will have r_offset pointing at the .plt word it
relocates. To support lazy linking, the link editor will set each .plt word to point to the symbol resolver
stub in .glink. On loading a shared library, the dynamic linker should relocate the contents of the .plt
section by adding the load address to each word in .plt.

Note: As a security measure, the .got and the .plt may be protected as read-only after relocations are
performed. This necessitates that any sections in the Data Segment that can be protected as
read-only be grouped together, separate from those that remain read-write. This will affect section
ordering in the segment as shown in Figure 4-2.

118

Chapter 5. Program Loading and Dynamic Linking

Note: This ABI does not require a fixed GOT register, or even one register used throughout a binary.
Non-PIC code does not set the _cr.oBAL_orFFsSET_TABLE_ pointer and does not need to reserve a
register for that purpose. Code under the PIC addressing model that accesses static storage or calls
nonlocal functions will need a register to hold the _cr.oear_orrseT_TaBLE_ pointer. However, leaf
functions or functions that only call other functions which are static (@local) may use any
general-purpose register within the constraints for the existing ABI.

PIC-code functions that call nonlocal functions will need to allocate a register to hold the
_GLOBAL_OFFSET_TABLE_ pointer which is used by the PLT call stubs. This requires a protocol
between the compiler (which generates the function prologue and sets the _GLOBAL_OFFSET_TABLE_
pointer) and the link editor (which generates the PLT call stubs, that use the pointer). Allowing an
arbitrary register for the _GLOBAL_OFFSET_TABLE_ pointer will require additional relocations to allow
the compiler to communicate which register it is using to the link editor.

Some code, such as that generated by using the large model PIC, does not have a single GOT section but
rather implements multiple GOT sections, one per file in .got2. To support multiple GOT pointers, the
addend on each R_PPC_PLTREL24 reloc will have the offset within .got2 used as the GOT pointer. The
link editor might need to generate multiple plt call stubs for a given destination.

To allow the dynamic linker to support both old and new shared libraries, a per library flag that indicates
the old or new plt layout is required. The dynamic tag, DT_PPC_GOT, shall be set to the link-time
address of _GLOBAL_OFFSET_TABLE_. This allows the dynamic linker to check at library load and PLT
resolve time and perform the appropriate set-up and relocations.

Note: The Secure-PLT ABI enabled dynamic linker shall support BSS-PLT ABI libraries as long as
the kernel allows the required memory protection states.

The link editor will detect the difference between BSS-PLT relocatable objects and Secure-PLT
relocatable objects by looking at relocations. A relocatable object using the Secure-PLT ABI will
always have R_PPC_REL16" relocations if it uses the GOT or (potentially) calls from the PLT.
BSS-PLT ABI files will not have these R_PPC_REL16 relocations.

The link editor will accept a mix of Secure-PLT ABI and BSS-PLT ABI relocatable objects, but the
existence of any BSS-PLT relocatable objects as input will force the resulting executable file or
shared object file to use the BSS-PLT ABI.

ATR-SECURE-PLT

ATR-TLS

119

Chapter 6. Libraries

6.1. Library Requirements

This ABI doesn’t specify any additional interfaces for general-purpose libraries. However, certain
processor specific support routines are defined in order to ensure portability between ABI conforming
implementations.

Such processor specific support definitions concern floating-point alignment, register save/restore
routines, variable argument list layout and a limited set of data definitions.

6.1.1. C Library Conformance with Generic ABI

6.1.1.1. Malloc Routine Return Pointer Alignment

The malloc () routine must always return a pointer with the alignment of the largest supported data type
from the following list:

ATR-LONG-DOUBLE-IBM

« At least 16-byte (quadword) aligned, as the required pointer may be used for storing IBM AIX 128-bit
Long Double data items that require 16-byte alignment.

ATR-DFP

« At least 16-byte (quadword) aligned, as the required pointer may be used for storing _Decimal128
data items that require 16-byte alignment.

6.1.1.2. Library Handling of Limited-access Bits in Registers

Requirements for the handling of limited-access bits in certain registers by standard library functions are
defined in Section 3.2.1.2.

6.1.2. Save and Restore Routines

All of the save and restore routines described in Section 3.3.4 are required. These routines use unusual
calling conventions due to their special purpose.

120

Chapter 6. Libraries

6.1.2.1. Save and Restore Routine Suffixes
The following suffix extensions describe the function templates in Section 6.1.2.2.
_m (save and restore function variable)

The variable _m represents the first register to be saved. That is, to save registers 18 to 31 using

32-bit saves, one would call save32gpr_18.

ATR-BSS-PLT

_g (save function qualifier)

GOT save functions are represented by the _g qualifier. These functions return to the caller of the
save function by branching to the blrl instruction held at _GLOBAL_OFFSET_TABLE_-4.

ATR-SECURE-PLT

_g (save function qualifier)
GOT save functions use the _g qualifier. These functions are illegal to use with the Secure-PLT
ABI since the Secure-PLT is not executable.

_X (restore function qualifier)
Exit restore functions are represented by the _x qualifier. These functions restore the specified
registers and use the link-register value in the calling function’s LR-save area to return to the

caller’s parent function after removing the caller’s stack frame.

_t (restore function qualifier)
Tail restore functions are represented by the _t qualifier. Given the following function call

sequence where function3 is a tail-call:

functionl ()

{
function2 () ;
<further calls and code>

return;

function2 ()

{
_rest*_t();
return function3();

}

The tail restore functions are called from function2 and prepare the register state in function2 for a
tail-call to function3 that is to return directly to functionl. They restore the specified registers for
functionl from functionl’s stack frame and save the address of functionl from the LRSAVE word of
functionl’s stack frame into RO before returning control to function2. Function2 then sets the LR to

121

Chapter 6. Libraries

the address of functionl held in RO and calls the tail function function3. Function3 will perform it’s

duty and then return directly to functionl rather than function2.

6.1.2.2. Save and Restore Routine Templates

e _Ssavegpr_m

ATR-CLASSIC-FLOAT

+ _savefpr_m

ATR-VECTOR

« _savevr_m

ATR-CLASSIC-FLOAT

+ _restfpr_m

ATR-CLASSIC-FLOAT

+ _restfpr_m_x

ATR-CLASSIC-FLOAT

+ _restfpr_m_t

ATR-VECTOR

e _restvr_m

e _restgpr_m
« _restgpr_m_Xx

o _restgpr_m_t

122

Chapter 6. Libraries

ATR-SPE
« _save32gpr_m

ATR-SPE
« _saveb4gpr_m

ATR-SPE
+ _rest32gpr_m

ATR-SPE
+ _restbdgpr_m

ATR-SPE
+ _rest32gpr_m_x

ATR-SPE
+ _restb4gpr_m_x

ATR-SPE

« _rest32gpr_m_t

123

Chapter 6. Libraries

ATR-SPE

- _restb4gpr_m_t

6.1.3. Types Defined In Standard Header

The type va_list shall be defined as follows:

typedef struct __va_list_tag {
unsigned char gpr;
unsigned char fpr;
/+ Two bytes padding. «/
char xoverflow_arg_area;
char *reg_save_area;

} va_list[1];

The names and types of the elements are not part of the ABI, but the __va_1list_tag name is part of
the ABI (since it affects C++ name mangling), and the structure must have the size, alignment and layout
implied by this definition.

+ The gpr element holds the index of the next general-purpose register saved in this area from which an
argument would be retrieved with va_arg (), where gpr == N corresponds to rN + 3. (If the
argument is passed as DUAL_GP and gpr is odd, the next argument would be retrieved from rN + 4
and rN & plus; 5 instead.) If gpr is greater than 7, no more arguments will be retrieved from
general-purpose registers by va_arg ().

ATR-CLASSIC-FLOAT

« The fpr element holds the index of the next floating-point register saved in this area from which an
argument would be retrieved with va_arg ().

« Fpr == N corresponds to fN + 1. If fpr is greater than 7, no more arguments will be retrieved from
floating-point registers by va_arg ().

ATR-DFP

- If the argument being passed is _Decimal128 and fpr == N where N is even then fN + 2 and fN + 3
are referred to instead. If fpr is greater than 6, no more arguments will be retrieved from
floating-point registers by va_arg ().

+ reg_save_area points to an 8-byte-aligned area where registers r3 to r10 are saved, in that order.

124

Chapter 6. Libraries

Addresses in the area pointed to by reg_save_area that correspond to registers used for passing named
arguments, or to unused registers between those used for passing named arguments, need not
correspond to allocated memory; those registers need not be saved in this area. va_arg shall only
access those words required to load the argument of the type passed.

ATR-SPE

Only the low 32 bits of each register are saved in this area.

ATR-CLASSIC-FLOAT

Registers f1 to 8 immediately follow registers r3 to r10, if CR bit 6 was set when the
variable-argument function was called.

« The overflow_arg_area element points to the word on the stack at the start of the next argument
passed on the stack, or to a prior word that forms part of the padding required for the next argument to
have the required alignment. va_arg shall only access those words required to load the argument of the
type passed; if no arguments were passed on the stack, this area may not be allocated.

The following integer types are defined in headers required to be provided by freestanding
implementations, or have their limits defined in such headers, and shall have the following definitions.

« typedef int ptrdiff_t;

- typedef unsigned int size_t;

« typedef long wchar_t;

» typedef int sig_atomic_t;

« typedef unsigned int wint_t;

« typedef signed char int8_t;

« typedef short int16_t;

« typedef int int32_t;

« typedef long long int64_t;

« typedef unsigned char uint8_t;

« typedef unsigned short uint16_t;
« typedef unsigned int uint32_t;

« typedef unsigned long long uint64_t;
+ typedef signed char int_least8_t;
« typedef short int_least16_t;

+ typedef int int_least32_t;

125

Chapter 6. Libraries

typedef long long int_least64_t;

typedef unsigned char uint_least8_t;
typedef unsigned short uint_least16_t;
typedef unsigned int uint_least32_t;
typedef unsigned long long uint_least64._t;
typedef signed char int_fast8_t;

typedef int int_fast16_t;

typedef int int_fast32_t;

- typedef long long int_fast64_t;

typedef unsigned char uint_fast8_t;
typedef unsigned int uint_fast16_t;
typedef unsigned int uint_fast32_t;
typedef unsigned long long uint_fast64_t;
typedef int intptr_t;

typedef unsigned int uintptr_t;

« typedef long long intmax_t;

typedef unsigned long long uintmax_t;

126

Appendix A. Taxonomy

The following list describes the archetypal ABI attributes used to conditionally define elements of the
ABI. The relationship of these attributes is described in the taxonomy diagram in Figure A-1. A
combination of these attributes is used to generate the individual Linux and Embedded ABI documents.
These combinations are described in Appendix B. Each attribute description indicates whether it is an
ABI software feature or an attribute that is tied to a specific Power ISA category.

32-bit PowerPC Archetypal ABI Attributes
ATR-BSS-PLT
(ABI Software Feature)

The text under this attribute defines the BSS Procedure Linkage Table ABI, which has a writable
and executable PLT. ATR-BSS-PLT is mutually exclusive with ATR-SECURE-PLT.

ATR-CLASSIC-FLOAT
(Power ISA Category: Floating-Point)

The text under this attribute describes the classic Power Architecture floating-point ABI where there
are 64-bit floating-point registers and an instruction set that accompanies them.
ATR-CLASSIC-FLOAT is mutually exclusive with ATR-SOFT-FLOAT.

ATR-PASS-COMPLEX-IN-GPRS
(ABI Software Feature)

The text under this attribute describes a method for passing complex data types in GPRS.
ATR-PASS-COMPLEX-IN-GPRS is mutually exclusive and incompatible with
ATR-PASS-COMPLEX-AS-STRUCT. ATR-PASS-COMPLEX-IN-GPRS is predicated on
ATR-CLASSIC-FLOAT or ATR-SOFT-FLOAT.

ATR-PASS-COMPLEX-AS-STRUCT
(ABI Software Feature)

The text under this attribute describes a method for passing complex data types as structures.
ATR-PASS-COMPLEX-AS-STRUCT is mutually exclusive and incompatible with
ATR-PASS-COMPLEX-IN-GPRS. ATR-PASS-COMPLEX-IN-GPRS is predicated on
ATR-CLASSIC-FLOAT or ATR-SOFT-FLOAT.

ATR-CXX

(ABI Software Feature)

The text under this attribute describes C++ exception support as it impacts this ABI.
ATR-DFP

(Power ISA Category: Decimal Floating-Point)

The text under this attribute describes the Decimal Floating Point ABI as it relates to decimal
floating-point registers, alignment, parameter passing, etc. This was introduced in Power ISA 2.05.
ATR-DFP is predicated on ATR-CLASSIC-FLOAT or ATR-SOFT-FLOAT.

127

Appendix A. Taxonomy

ATR-EABI

(Power ISA Category: Embedded)

This attribute describes elements that apply to the Embedded ABI as a whole.
ATR-EABI-EXTENDED

(ABI Software Feature)

This attribute describes elements that apply an implementation of the Embedded ABI with extended
conformance such as support for dynamic linking, the GOT, PLT, full relocation support, etc.

ATR-LINUX

(Power ISA Category: Server)

This attribute describes elements that apply to the Linux ABI as a whole.
ATR-LONG-DOUBLE-IBM

(ABI Software Feature)

The text under this attribute describes usage of the AIX 128-bit Long Double format.
ATR-LONG-DOUBLE-IBM is mutually exclusive with ATR-LONG-DOUBLE-IS-DOUBLE.
ATR-LONG-DOUBLE-IBM is predicated on ATR-CLASSIC-FLOAT or ATR-SOFT-FLOAT.

ATR-LONG-DOUBLE-IS-DOUBLE
(ABI Software Feature)

The text under this attribute describes long double ABI when long double is treated as double.
ATR-LONG-DOUBLE-IS-DOUBLE is mutually exclusive with ATR-LONG-DOUBLE-IBM.
ATR-LONG-DOUBLE-IS-DOUBLE is predicated on ATR-CLASSIC-FLOAT or
ATR-SOFT-FLOAT.

ATR-SECURE-PLT
(ABI Software Feature)

The text under this attribute describes the Secure Procedure Linkage Table ABI, which has a
readable and writable, but nonexecutable PLT. ATR-SECURE-PLT is mutually exclusive with
ATR-BSS-PLT.

ATR-SOFT-FLOAT
(ABI Software Feature)

The text under this attribute describes a software emulated 64-bit (double) floating-point ABI which
also describes the conventions for Embedded Floating Point in 64-bit GPRs such as SPE-Float.
ATR-SOFT-FLOAT is mutually exclusive with ATR-CLASSIC-FLOAT.

ATR-SPE
(Power ISA Category: SPE)

The text under this attribute describes the Signal Processing Engine ABI for the SPE facility that
was introduced in Power ISA v2.03 It is a SIMD instruction set using two element short vectors
within 64-bit GPRs. ATR-SPE is mutually exclusive with ATR-VECTOR. ATR-SPE includes
SPE-Float which leverages ATR-SOFT-FLOAT. Therefore ATR-SPE is predicated on
ATR-SOFT-FLOAT and mutually exclusive with ATR-CLASSIC-FLOAT.

128

Appendix A. Taxonomy

ATR-TLS
(ABI Software Feature)

The text under this attribute describes the Thread Local Storage ABI. At the time of this writing
ATR-TLS is mutually exclusive with ATR-EABI since ATR-EABI uses the thread local storage
register for the SDATA?2 pointer.

ATR-VECTOR
(Power ISA Category: Vector)

The text under this attribute describes the AltiVec and VMX float and integer SIMD instruction set
ABI. ATR-VECTOR is mutually exclusive with ATR-SPE. ATR-VECTOR is predicated on
ATR-CLASSIC-FLOAT or ATR-SOFT-FLOAT.

ATR-VLE
(Power ISA Category: VLE)

The text under this attribute describes the Variable Length Encoding environment as introduced in
Power ISA 2.03.

The following taxonomy (described in EBNF) describes the relationship between the aforementioned
ABI attributes.

Figure A-1. Taxonomy

ABI —-> CommonCore OperatingEnvironment ISA-Flavor
CommonCore —-> SYS-V-Without-Float { /* No attribute. Implicit. =/ }

OperatingEnvironment -> Linux { atr = ATR-LINUX }
| EABT { atr = ATR-EABI }

ISA-Flavour —-> SIMD Encoding Floating-Point

SIMD —-> Vector { atr = ATR-VECTOR }
| SPE { atr = ATR-SPE }
| /+ Epsilon */ { com = "/x No SIMD. /" }

Encoding -> VLE { atr = ATR-VLE }
Floating-Point -> Common-Float Long-Double FP-Decimal

ATR-CLASSIC-FLOAT }
ATR-SOFT-FLOAT }

Common-Float —-> Classic-Float-Common { atr
| Soft-Float—-Common { atr

Procedure-Linkage-Table -> BSS-PLT { atr = ATR-BSS-PLT }
| Secure-PLT { atr ATR-SECURE-PLT }

Thread-Local-Storage -> TLS { atr = ATR-TLS }

Long-Double -> IBM { atr = ATR-LONG-DOUBLE-IBM }
| None { atr = ATR-LONG-DOUBLE-IS-DOUBLE }

FP-Decimal -> /x Epsilon %/ { com = "/ No FP-Decimal =/" }

129

Appendix A. Taxonomy

| DFP { atr = ATR-DFP }

Complex —-> Pass Complex in GPRS { atr ATR-PASS-COMPLEX—-IN-GPRS }

| Pass Complex As Struct { atr = ATR-PASS-COMPLEX-AS-STRUCT }
CXX —-> C++ Exception Handling { atr = ATR-CXX }
EABI-Extended -> /% Epsilon =*/ { com = "/« No EABI Extended */" }

| EABI Extended Conformance { atr = ATR-EABI-EXTENDED }

130

Appendix B. Attribute Inclusion and ABI
Conformance

This appendix describes ABI attribute inclusion and conformance rules. It uses the attribute tags
described in Appendix A.

B.1. ATR-LINUX Inclusion and Conformance

Linux ABI Attribute Inclusions:

ATR-BSS-PLT
ATR-CLASSIC-FLOAT

« ATR-CXX

ATR-DFP
ATR-LONG-DOUBLE-IBM
ATR-LONG-DOUBLE-IS-DOUBLE
ATR-SECURE-PLT
ATR-SOFT-FLOAT

ATR-SPE

- ATR-TLS

ATR-VECTOR
ATR-PASS-COMPLEX-IN-GPRS

Linux ABI Attribute Exclusions:

ATR-PASS-COMPLEX-AS-STRUCT
ATR-VLE

« ATR-EABI-EXTENDED

Linux ABI Conformance

An implementation of the Linux ABI must implement at least one of the following:
ATR-SOFT-FLOAT ATR-CLASSIC-FLOAT

If an implementation supports 64-bit vector types on SPE processors or uses the high parts of registers
on such processors it must implement ATR-SPE.

An implementation of the Linux ABI must implement ATR-LONG-DOUBLE-IBM and may also
implement ATR-LONG-DOUBLE-IS-DOUBLE. A conforming application only uses one or the other.

An implementation that supports decimal floating point must implement ATR-DFP. Hardware support
for DFP requires implementation of ATR-CLASSIC-FLOAT otherwise ATR-SOFT-FLOAT can
provide software emulation.

An implementation must implement ATR-SECURE-PLT. ATR-BSS-PLT should be supported for

131

Appendix B. Attribute Inclusion and ABI Conformance

binary compatibility with previous versions of this ABI.

- Availability of Vector data types is subject to conformance to a Power ISA category where the

categories Vector and Signal Processing Engine are mutually exclusive. A conforming application
only uses ATR-VECTOR or ATR-SPE.

Note: An implementation of this ABI shall indicate explicitly which attributes are supported.
Supporting attributes which are mutually exclusive is fine as long as only one is supported at a given
time during application execution.

B.2. ATR-EABI Inclusion and Conformance

EABI Attribute Inclusions

ATR-BSS-PLT
ATR-CLASSIC-FLOAT
ATR-EABI-EXTENDED
ATR-PASS-COMPLEX-AS-STRUCT
ATR-PASS-COMPLEX-IN-GPRS
ATR-LONG-DOUBLE-IS-DOUBLE
ATR-SOFT-FLOAT

ATR-SPE

ATR-VLE

EABI Attribute Exclusions

ATR-CXX

ATR-DFP
ATR-LONG-DOUBLE-IBM
ATR-SECURE-PLT
ATR-TLS

ATR-VECTOR

EABI Conformance

The EABI does not support thread local storage (ATR-TLS) at this time.
The EABI does not support ATR-SECURE-PLT at this time.

The EABI does not support unwind information.

+ An implementation of the EABI ABI can implement ATR-PASS-COMPLEX-AS_STRUCT and/or

implement ATR-PASS-COMPLEX-IN-GPRS but a conforming application shall only use one or the
other.

132

Appendix B. Attribute Inclusion and ABI Conformance

+ Conformance with the EABI does not require implementation of ATR-EABI-EXTENDED, which
describes implementation of extended conformance such as support for dynamic linking, the GOT,
PLT, full relocation support, etc.

Note: An implementation of this ABI shall indicate explicitly which attributes are supported.
Supporting attributes which are mutually exclusive is fine as long as only one is supported at a given
time during application execution.

133

Appendix C. APUs and Power ISA Categories

This appendix discusses the relationship between Auxiliary Processing Units (APUs) and Power ISA
categories.

APUs are a method used to extend the Power Architecture beyond the facilities described and ratified in
the Power ISA. Since the adoption of the Power ISA many technologies that were historically presented
as APUs have now been subsumed into the Power ISA as optional categories or phased into the base ISA.

Since this ABI is not predicated on minimum Power ISA version it continues to present information on
APUs (see Section 4.10) that have been subsumed into the Power ISA. It is up to the implementation
whether to follow the Power ISA or the APU designation based upon compatibility requirements and to
specify APU information as necessary.

The following table identifies APUs and their relationship to the Power ISA.
Table C-1. APU Extensions and Corresponding Power ISA Categories

APU Extension APU Identifier Power ISA Category Description

Altivec 0x003f \" Vector Facility

PMR 0x0041 EpmE Embedded.Performance Monitor

RFMCI 0x0042 E Embedded, Return From Machine
Check Interrupt instruction

CACHE_LOCK 0x0043 ECL Embedded Cache Locking

SPE 0x0100 SP, SPFV Signal Processing Engine,
SPE.Embedded Float Vector

E500 SFFP/EFS 0x0101 SPfs, SP.fd Embedded Float Scalar Single,
Embedded Float Scalar Double

VLE 0x0104 VLE Variable Length Encoding

ISEL 0x0040 Base Power ISA Base (mandatory),

Integer Select instruction
The following APUs remain unspecified by the Power ISA (as of version 2.05).
Table C-2. APUs

APU Extension APU Identifier
€500 BRLOCK 0x0102

134

	Power Architecture® 32bit Application Binary Interface Supplement 1.0 Linux®
	Table of Contents
	List of Figures
	List of Tables
	Preface
	1. How To Read This Document
	2. Section Numbering

	Chapter 1. Introduction
	1.1. Reference Documentation

	Chapter 2. Software Installation
	2.1. Physical Distribution Media and Formats

	Chapter 3. Low Level System Information
	3.1. Machine Interface
	3.1.1. Processor Architecture
	3.1.2. Data Representation
	3.1.2.1. Byte Ordering
	3.1.2.2. Fundamental Types
	3.1.2.3. Aggregates and Unions
	3.1.2.4. Bitfields

	3.2. Function Calling Sequence
	3.2.1. Registers
	3.2.1.1. Register Roles
	3.2.1.2. LimitedAccess Bits

	3.2.2. The Stack Frame
	3.2.2.1. General Stack Frame Requirements
	3.2.2.2. Optional Save Areas
	Register Save Areas
	CR Save Area
	Category Specific SaveRegister Save Area
	CategorySpecific Register Save Areas
	Additional Category Specific Register Save Areas
	Parameter Save Area
	Local Variable Space

	3.2.3. Parameter Passing
	3.2.3.1. Parameter Passing Register Selection Algorithm
	3.2.3.2. Parameter Passing Examples

	3.2.4. Variable Argument Lists
	3.2.5. Return Values

	3.3. Coding Examples
	3.3.2. Code Model Overview
	3.3.3. Function Prologue and Epilogue
	3.3.3.1. The Purpose of a Function's Prologue
	3.3.3.2. The Purpose of a Function's Epilogue
	3.3.3.3. Rules for Prologue and Epilogue Sequences

	3.3.4. Register Saving and Restoring Functions
	3.3.4.1. Details about the Functions
	3.3.4.2. Register Saving and Restoring Functions (Vector)

	3.3.5. Profiling
	3.3.6. Data Objects
	3.3.7. Function Calls
	3.3.8. Branching
	3.3.9. Dynamic Stack Space Allocation

	3.4. DWARF Definition
	3.5. Exception Handling

	Chapter 4. Object Files
	4.3. ELF Header
	4.4. Special Sections
	4.6. Symbol Table
	4.6.1. Symbol Values

	4.7. Small Data Area
	4.7.1. Use of the Small Data Area in Executables
	4.7.2. Use of the Small Data Area in Shared Objects

	4.9. DWARF Additions
	4.10. APU Information Section
	4.13. Relocation Types
	4.13.1. Relocation Fields
	4.13.2. SPE Specific Relocation Fields
	4.13.4. Relocation Notations
	4.13.5. Relocation Types Table
	4.13.6. Relocation Descriptions

	4.15. Thread Local Storage ABI
	4.15.1. TLS Background
	4.15.2. TLS Runtime Handling
	4.15.3. TLS Access Models
	4.15.3.1. General Dynamic TLS Model
	4.15.3.2. Local Dynamic TLS Model
	4.15.3.3. Initial Exec TLS Model
	4.15.3.4. Local Exec TLS Model

	4.15.4. TLS Link Editor Optimizations
	4.15.4.1. General Dynamic to Initial Exec
	4.15.4.2. General Dynamic to Local Exec
	4.15.4.3. Local Dynamic to Local Exec
	4.15.4.4. Initial Exec to Local Exec

	4.15.5. ELF TLS Definitions
	TLS Relocation Descriptions

	Chapter 5. Program Loading and Dynamic Linking
	5.1. Program Loading
	5.1.1. Addressing Models

	5.2. Dynamic Linking
	5.2.1. Program Interpreter
	5.2.2. Dynamic Section
	5.2.3. Global Offset Table
	5.2.3.1. Global Offset Table Under The SecurePLT ABI
	5.2.3.2. Global Offset Table Under The BSSPLT ABI

	5.2.4. Function Addresses
	5.2.5. Procedure Linkage Table
	5.2.5.1. BSS Procedure Linkage Table
	5.2.5.2. Secure Procedure Linkage Table

	Chapter 6. Libraries
	6.1. Library Requirements
	6.1.1. C Library Conformance with Generic ABI
	6.1.1.1. Malloc Routine Return Pointer Alignment
	6.1.1.2. Library Handling of Limitedaccess Bits in Registers

	6.1.2. Save and Restore Routines
	6.1.2.1. Save and Restore Routine Suffixes
	6.1.2.2. Save and Restore Routine Templates

	6.1.3. Types Defined In Standard Header

	Appendix A. Taxonomy
	32bit PowerPC Archetypal ABI Attributes

	Appendix B. Attribute Inclusion and ABI Conformance
	B.1. ATRLINUX Inclusion and Conformance
	B.2. ATREABI Inclusion and Conformance

	Appendix C. APUs and Power ISA Categories

