
Power Architecture® 32-bit Application
Binary Interface Supplement 1.0 -

Embedded

Ryan S. Arnold
IBM

Greg Davis
Green Hills

Brian Deitrich
Freescale Semiconductor

Michael Eager
Eager Consulting

Emil Medve
Freescale Semiconductor

Steven J. Munroe
IBM

Joseph S. Myers
CodeSourcery

Steve Papacharalambous
Freescale Semiconductor

Anmol P. Paralkar
Freescale Semiconductor

Katherine Stewart
Freescale Semiconductor

Edmar Wienskoski
Freescale Semiconductor

Power Architecture® 32-bit Application Binary Interface Supplement 1.0 - Embedded
by Ryan S. Arnold, Greg Davis, Brian Deitrich, Michael Eager, Emil Medve, Steven J. Munroe, Joseph S. Myers,
Steve Papacharalambous, Anmol P. Paralkar, Katherine Stewart, and Edmar Wienskoski

1.0 Edition
Published April 19, 2011
Copyright © 1999, 2003, 2004 IBM Corporation
Copyright © 2002 Freescale Semiconductor, Inc.
Copyright © 2003, 2004 Free Standards Group
Copyright © 2011 Power.org
The ATR-LINUX portions of this document are derived from the 64-bit PowerPC ELF Application Binary Interface
Supplement 1.8, originally written by Ian Lance Taylor under contract for IBM, with later revisions by: David
Edelsohn, Torbjorn Granlund, Mark Mendell, Kristin Thomas, Alan Modra, Steve Munroe, and Chris Lorenze.

The ATR-TLS and ATR-SECURE-PLT sections of this document are original contributions of IBM written by Alan
Modra and Steven Munroe.

The ATR-SPE and ATR-EABI portions of this document are derived from material used to write the E500 ABI and
are contributed by Freescale Semiconductor.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3; with

no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is available from

http://www.gnu.org/licenses/fdl-1.3.txt.

The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States and/or other

countries: AIX®, PowerPC®, VMX®, POWER™. A full list of U.S. trademarks owned by IBM may be found at

http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of Freescale Semiconductor in the United States and/or other countries: AltiVec™,

e500™. Information on the list of U.S. trademarks owned by Freescale Semiconductor may be found at

http://www.freescale.com/files/abstract/help_page/TERMSOFUSE.html.

The following terms are trademarks or registered trademarks of Power.org in the United States and/or other countries: Power ISA™, Power

Architecture®. Information on the list of U.S. trademarks owned by Power.org may be found at http://www.power.org/brand_center/home/.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries. Further information on this trademark can be found at

http://www.linuxfoundation.org/programs/legal/trademark.

Revision History

Revision 1.0 April 19, 2011 Revised by: Power.org PowerABI TSC

Table of Contents
Preface ... vii

1. How To Read This Document ... vii
2. Section Numbering .. viii

1. Introduction..1
1.1. Reference Documentation...1

2. Software Installation ...3
2.1. Physical Distribution Media and Formats...3

3. Low Level System Information...4
3.1. Machine Interface..4

3.1.1. Processor Architecture..4
3.1.2. Data Representation..4

3.1.2.1. Byte Ordering...4
3.1.2.2. Fundamental Types ..7
3.1.2.3. Aggregates and Unions ..9
3.1.2.4. Bit-fields...11

3.2. Function Calling Sequence ...16
3.2.1. Registers ...17

3.2.1.1. Register Roles ..17
3.2.1.2. Limited-Access Bits...21

3.2.2. The Stack Frame...24
3.2.2.1. General Stack Frame Requirements...25
3.2.2.2. Optional Save Areas...26

3.2.3. Parameter Passing...31
3.2.3.1. Parameter Passing Register Selection Algorithm ..32
3.2.3.2. Parameter Passing Examples ...35

3.2.4. Variable Argument Lists...37
3.2.5. Return Values..38

3.3. Coding Examples ..39
3.3.1. Code Model Overview..39
3.3.3. Function Prologue and Epilogue ..39

3.3.3.1. The Purpose of a Function’s Prologue ...40
3.3.3.2. The Purpose of a Function’s Epilogue ...40
3.3.3.3. Rules for Prologue and Epilogue Sequences ...40

3.3.4. Register Saving and Restoring Functions...41
3.3.4.1. Details about the Functions..43

3.3.5. Profiling ..49
3.3.6. Data Objects ...50
3.3.7. Function Calls...53
3.3.8. Branching ...55
3.3.9. Dynamic Stack Space Allocation ...56

3.4. DWARF Definition..58

iii

4. Object Files...60
4.1. EABI Executable and Linking Format (ELF) Object Files ..60
4.2. EABI Object File Processing ..60
4.3. ELF Header ...60
4.4. Special Sections ..61
4.5. Special Embedded Sections ..62
4.6. Symbol Table ..64

4.6.1. Symbol Values ..64
4.8. EABI Small Data Areas ..65

4.8.1. Small Data Area (.sdata and .sbss) ...66
4.8.2. Small Data Area 2 (.PPC.EMB.sdata2 and .PPC.EMB.sbss2).....................................67
4.8.3. Small Data Area 0 (.PPC.EMB.sdata0 and .PPC.EMB.sbss0).....................................67

4.9. DWARF Additions ..67
4.10. APU Information Section..68
4.11. VLE Identification...70
4.12. ROM Copy Segment Information Section ..71
4.13. Relocation Types ...72

4.13.1. Relocation Fields ..72
4.13.2. SPE Specific Relocation Fields ..74
4.13.3. VLE Specific Relocation Fields ...74
4.13.4. Relocation Notations ..76
4.13.5. Relocation Types Table...79
4.13.6. Relocation Descriptions..83

4.14. EABI Relocations and Linking ...88

5. Program Loading and Dynamic Linking ..89
5.3. EABI Program Loading and Dynamic Linking ..89

6. Libraries ...90
6.1. Library Requirements ...90

6.1.1. C Library Conformance with Generic ABI ..90
6.1.1.1. Malloc Routine Return Pointer Alignment ..90
6.1.1.2. Library Handling of Limited-access Bits in Registers.....................................90

6.1.2. Save and Restore Routines ...90
6.1.2.1. Save and Restore Routine Suffixes ..90
6.1.2.2. Save and Restore Routine Templates...91

6.1.3. Types Defined In Standard Header...94

A. Taxonomy...97
B. Attribute Inclusion and ABI Conformance ..101

B.1. ATR-LINUX Inclusion and Conformance ...101
B.2. ATR-EABI Inclusion and Conformance ..102

C. APUs and Power ISA Categories...104

iv

List of Figures
3-1. Structure Smaller Than a Word ..9
3-2. Structure With No Padding...9
3-3. Structure With Internal Padding ...10
3-4. Structure With Internal and Tail Padding ...10
3-5. Union Allocation ..11
3-6. Simple Bit-field Allocation ..13
3-7. Bit-Field Allocation With Boundary Alignment ..13
3-8. Bit-Field Allocation With Storage Unit Sharing ..14
3-9. Bit-Field Allocation In A Union ..14
3-10. Bit-Field Allocation With Unnamed Bit-Fields ...15
3-11. Stack Frame Organization ..24
3-12. Example Minimum Stack Frame Allocation..26
3-13. General-Purpose and Floating-Point Register Save Areas ...26
3-15. CR Save Area ...28
3-16. CR Save Area With Floating-Point Save Area...28
3-18. SPE 64-bit General-Purpose Register Save Area ...29
3-19. Parameter Save Area and Local Variable Space...30
3-20. Parameter Passing Example ...35
3-22. SPE Parameter Passing Example..36
3-24. Profiling Example...49
3-25. Absolute Load and Store Example...50
3-26. Small Model Position-Independent Load and Store...51
3-27. Large Model Position-Independent Load and Store...51
3-28. Direct Function Call ...53
3-29. Absolute Indirect Function Call ...54
3-30. Small Model Position-Independent Indirect Function Call..54
3-31. Large Model Position-Independent Indirect Function Call..55
3-32. Before Dynamic Stack Allocation..57
3-33. Example code to allocate n bytes: ..57
3-34. After Dynamic Stack Allocation ..57
4-3. Section Ordering In the EABI ..65
A-1. Taxonomy ..99

List of Tables
3-1. Bit and Byte Numbering in Halfwords...5
3-2. Bit and Byte Numbering in Words ...5
3-3. Bit and Byte Numbering in Doublewords ..5
3-4. Bit and Byte Numbering in Quadwords ...5
3-5. Fundamental Types...7
3-6. SPE Types...8
3-10. Long Double Is Double Type ...8
3-11. Bit-Field Types ...12
3-12. Bit Numbering for 0x01020304 ...12

v

3-13. Register Roles...17
3-15. EABI Register Role for General-Purpose Register 2 ...19
3-16. Register Roles for the _Complex float and _Complex double Types...19
3-19. Floating-Point Register Roles for Binary Floating-Point Types ..20
3-21. Soft-Float General-Purpose Register Roles for Binary Floating-Point Types20
3-24. SPE Register Roles...21
3-27. Parameter Passing Using long double is double...35
3-28. Parameter Passing Using long double is double and Soft-Float...36
3-30. Parameter Passing of SPE Data Types ...37
3-33. SPE Save And Restore Rules ...43
3-34. Register Mappings..58
4-1. e_flags Bit Masks ...60
4-2. EABI Small Data Areas Summary...65
4-3. DWARF Additions For __ev64_opaque__ Support..68
4-4. Typical Elf Note Section Format ..68
4-5. Object File a.o ..68
4-6. Object File b.o ..69
4-7. Merged Object File b.o...69
4-8. APU Identifiers...69
4-9. Relocation Table...79
4-10. Relocation Table - Continued...80
4-11. Relocation Types For EABI Extended Conformance ..88
C-1. APU Extensions and Corresponding Power ISA Categories...104
C-2. APUs..104

vi

Preface

1. How To Read This Document

Implementations of this Power Architecture 32-bit Application Binary Interface Supplement should
indicate which ABI software features (see Appendix A) and Power ISA™ categories are implemented.
When reading this document, the reader should reference those constraints and selectively read this text
based upon them.

Appendix A provides a taxonomy of the information in this ABI document. The core of the ABI is
common to all implementations and appears as nonconditional text, tables, and graphics.

Optional ABI software feature text or Power ISA category specific text is represented in the taxonomy as
conditional attributes of the form ATR-FOO (where “FOO” is one of the attributes described in
Appendix A). These attributes are used in the ABI text as element tags which aid in selective reading (and
the generation) of this ABI document. These attributes describe the relationship of the optional elements
of this document to a specific implementation.

This version of the Power Architecture 32-bit Application Binary Interface Supplement may take one of
the following forms:

Linux & Embedded

The unified ABI document contains all text from all implementations of the ABI.

Linux

The technical conditions governing implementations of the Linux ABI are described by attribute
conformance and inclusion rules in Appendix B, Section B.1. The attribute tags described in that part
of the appendix are used to conditionally generate the Linux ABI variant of this document.

Embedded

The technical conditions governing implementations of the Embedded ABI are described by
attribute conformance and inclusion rules in Appendix B, Section B.2. The attribute tags described
in that part of the appendix are used to conditionally generate the Embedded ABI variant of this
document.

Document elements representing Categories of the Power ISA are required for a software
implementation based upon the implementation's conformance with either Book III-S or Book III-E of
the Power ISA.

The following bounding box exemplifies a document element which corresponds to a category of the
Power ISA.

ATR-SPE

This is an example of conditional text that applies to implementations that support the Signal Processing
Engine (SPE) ABI, an optional category of the Power ISA.

vii

Preface

This document also contains elements that correspond to optional ABI software features that may or may
not be present in specific implementations. A prime differentiation would be software features used in
embedded environments vs. those used in server environments, e.g., support for threading as defined by
the Thread Local Storage ABI, support for the secure-PLT, or support for dynamic linking.

!ATR-TLS

This is an example of conditional text that applies to an implementation which does not support a
specific software feature.

2. Section Numbering

The subsection numbering of the unified Linux & Embedded version of the Power Architecture 32-bit
Application Binary Interface Supplement is sequential and does not skip digits between sibling
subsections since it contains all of the text, tables, and graphics available.

The individual Linux and Embedded versions of the Power Architecture 32-bit Application Binary
Interface Supplement contain a subset of the text, tables, and graphics available. The subsection numbers
of these subset documents remain congruent with those of the Linux & Embedded version of the Power
Architecture 32-bit Application Binary Interface Supplement (and with each other where they overlap) in
order to prevent confusion during cross-reference and therefore subsection numbering can appear to skip
digits between sibling subsections.

viii

Chapter 1. Introduction
The Executable and Linkable Format (ELF) defines a linking interface for executables and shared objects
in two parts. The first part is the generic System V ABI. The second part is a processor-specific
supplement.

This document is the processor-specific supplement for use with ELF on 32-bit Power Architecture
processor systems. This is not a complete System V Application Binary Interface Supplement because it
does not define any library interfaces.

Furthermore, this document establishes both big-endian and little-endian application binary interfaces
(see Section 3.1.2.1). Processors in the 32-bit Power Architecture can execute in either big-endian or
little-endian mode. Executables and executable generated data (in general) that subscribe to either byte
ordering are not portable to a system running in the other mode.

Note: This ABI specification does not address little-endian byte ordering prior to Power ISA 2.03.

The Power Architecture 32-bit Application Binary Interface Supplement is not the same as the 64-bit
PowerPC ELF ABI.

The Power Architecture 32-bit Application Binary Interface Supplement is intended to use the same
structural layout now followed in practice by other processor specific ABIs.

1.1. Reference Documentation
The archetypal ELF ABI is described by the System V ABI. Supersessions and addenda that are 32-bit
Power Architecture processor-specific are described in this document.

The following cited documents are complementary to this document and equally binding:

• Power Instruction Set Architecture Version 2.05, IBM, 2007.
http://www.power.org/resources/reading/PowerISA_V2.05.pdf

• DWARF Debugging Information Format Version 4, DWARF Debugging Information Format
Workgroup, 2010. http://dwarfstd.org/Dwarf4Std.php

• ISO/IEC 9899:1999(E): Programming languages—C, as amended by ISO/IEC
9899:1999/Cor.1:2001(E), ISO/IEC 9899:1999/Cor.2:2004(E) and ISO/IEC
9899:1999/Cor.3:2007(E), http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf

ATR-SPE

• SPEPIM: Signal Processing Engine Auxiliary Processing Unit Programming Interface Manual,
Freescale Semiconductor, 2004.
http://www.freescale.com/files/32bit/doc/ref_manual/SPEPIM.pdf?fsrch=1

ATR-VLE

• VLEPEM: Variable-Length Encoding (VLE) Programming Environments Manual, Freescale
Semiconductor, 2007. http://www.freescale.com/files/32bit/doc/ref_manual/VLEPEM.pdf?fsrch=1

1

Chapter 1. Introduction

The following documents are of interest for their historical information but are not normative in any way.

• The [32-bit] PowerPC Processor Supplement, Sun Microsystems, 1995.

• The 32-bit AIX ABI.

• The PowerOpen ABI.

2

Chapter 2. Software Installation

2.1. Physical Distribution Media and Formats
This document does not specify any physical distribution media or formats. Any agreed-upon
distribution media may be used.

3

Chapter 3. Low Level System Information

3.1. Machine Interface

3.1.1. Processor Architecture
This Application Binary Interface (ABI) is not explicitly predicated on a minimum Power ISA version.

All nonoptional instructions that are defined by the Power Architecture® can be assumed to be
implemented and work as specified. ABI conforming implementations must provide these instructions
through software emulation if they are not provided by the processor.

Note: The exceptions to this rule are the Fixed-point Load and Store Multiple and Fixed-point Move
Assist instructions which are not available in little-endian implementations because they would cause
alignment exceptions.

Processors may support additional instructions beyond the published Instruction Set Architecture (ISA)
and the Power Architecture optional ones, through Auxiliary Processing Units (APUs). This ABI
provides a method for describing the additional instructions in section information (see Section 4.4 and
Section 4.10) but does not address these additional instructions directly and executing them may result in
undefined behavior.

This ABI does not explicitly impose any performance constraints on systems.

3.1.2. Data Representation

3.1.2.1. Byte Ordering

The following standard data formats are recognized:

• 8-bit byte

• 16-bit halfword

• 32-bit word

• 64-bit doubleword

• 128-bit quadword

In big-endian byte ordering, the most significant byte is located in the lowest addressed byte position in
memory (byte 0). This byte ordering is alternately referred to as Most Significant Byte (MSB) ordering.

In little-endian byte ordering, the least significant byte is located in the lowest addressed byte position in
memory (byte 0). This byte ordering is alternately referred to as Least Significant Byte (LSB) ordering.

A specific processor implementation must state which type of byte ordering is to be used.

4

Chapter 3. Low Level System Information

ATR-SPE

Although it is possible on some processors to map some pages as little-endian, and other pages as
big-endian in the same application, such an application does not conform to the ABI.

Table 3-1, Table 3-2, Table 3-3, and Table 3-4 show the conventions being assumed in big-endian and
little-endian byte ordering at the bit and byte levels. These conventions are applied to integer and
floating-point data types. Byte numbers are indicated in the upper corners, and bit numbers in the lower
corners. Little-endian byte numbers are indicated on the right side; big-endian byte numbers are
indicated on the left side.

Table 3-1. Bit and Byte Numbering in Halfwords

0 1 1 0

msb lsb

0 7 8 15

Table 3-2. Bit and Byte Numbering in Words

0 3 1 2 2 1 3 0

msb lsb

0 7 8 15 16 23 24 31

Table 3-3. Bit and Byte Numbering in Doublewords

0 7 1 6 2 5 3 4

msb

0 7 8 15 16 23 24 31

4 3 5 2 6 1 7 0

lsb

32 39 40 47 48 55 56 63

5

Chapter 3. Low Level System Information

Table 3-4. Bit and Byte Numbering in Quadwords

0 15 1 14 2 13 3 12

msb

0 7 8 15 16 23 24 31

4 11 5 10 6 9 7 8

32 39 40 47 48 55 56 63

8 7 9 6 10 5 11 4

64 71 72 79 80 87 88 95

12 3 13 2 14 1 15 0

lsb

96 103 104 111 112 119 120 127

Note: In the Power ISA, the figures are generally only shown in big-endian byte order. The bits in
these data format specification are numbered from left to right (MSB to LSB).

ATR-SPE

Note: SPE documentation uses 64-bit numbering throughout, including for registers such as the CR
that only contain 32 bits. This numbering can lead to some confusion. For example, although the CR
bits are now numbered from 32 to 63, the same assembly instructions still work: crxor 6,6,6

operates on bit 32 + 6, that is, CR[38]. When discussing register contents, the bits are numbered 0 :
63 for 64-bit registers and 32 : 63 for 32-bit registers. When discussing memory contents, the bits are
numbered naturally (for example, 0 : 7 for bits within one byte and 0 : 15 for bits within halfwords).

The bit numbering in the Power ISA is all 64-bit except for the following registers indicated in Power
ISA section 1.4:

• Opcodes marking 0-31

ATR-CLASSIC-FLOAT

• As of Power ISA version 2.05 the FPSCR has been extended from 32-bits to 64-bits. The fields of the
original 32-bit FPSCR are now held in bits 32-63 of the 64-bit FPSCR. The assembly instructions
which operate upon the 64-bit FPSCR have either had a W Instruction Field added to select the
operative word for the instruction, e.g., mtfsfi, or the instruction has been extended to operate upon
the entire 64-bit FPSCR, e.g., mffs. Reference to fields of the FPSCR, representing 1 or more bits, is
done by field number with an indication of the operative word rather than by bit-number.

If the Power ISA version 2.05 DFP category is not needed by an implementation the FPSCR may
continue to be referenced as a 32-bit register using the old forms of the instructions to support binary
compatibility of ELF files built against an older Power ISA version. See Section 3.2.1 for more
information on the FPSCR.

6

Chapter 3. Low Level System Information

3.1.2.2. Fundamental Types

The following tables map the data format specifications described in the Power ISA to ISO C scalar
types. Each scalar type has a required alignment, which is indicated in the alignment column. Usage of
these types in data structures must follow the alignment specified in the order encountered to ensure
consistent mapping. When using variables individually, more strict alignment may be imposed if it has
optimization benefits.

Table 3-5. Fundamental Types

Type ISO C Types sizeof Alignment Description
Boolean _Bool 1 byte boolean

Character char 1 byte unsigned byte

unsigned char

signed char 1 byte signed byte

short 2 halfword signed halfword

signed short

unsigned short 2 halfword unsigned halfword

Enumeration signed enum 4 word signed word

unsigned enum 4 word unsigned word

Integral int 4 word signed word

signed int

long int

signed long

unsigned int 4 word unsigned word

unsigned long

long long 8 doubleword signed doubleword

signed long long

unsigned long long 8 doubleword unsigned doubleword

Pointer any * 4 word unsigned word

any (*) ()

Floating float 4 word single-precision float

double 8 doubleword double-precision float

A NULL pointer has all bits zero.

Note: A boolean value is represented as a byte with value 0 or 1. If a byte with a value other than 0 or
1 is evaluated as a boolean value (for example, through the use of unions), the behavior is undefined.

7

Chapter 3. Low Level System Information

Note: If an enumerated type contains a negative value, it is compatible with and has the same
representation and alignment as int; otherwise it is compatible with and has the same representation
and alignment as unsigned int.

Note: For each real floating-point type there is a corresponding complex type. This has the same
alignment as the real type and twice the size; the representation is the real part followed by the
imaginary part.

ATR-SPE

Table 3-6. SPE Types

Type SPEPIM C Types sizeof Alignment Description
vector-64 __ev64_u16__ 8 doubleword vector of four unsigned

halfwords

__ev64_s16__ 8 doubleword vector of four signed
halfwords

__ev64_u32__ 8 doubleword vector of two unsigned words

__ev64_s32__ 8 doubleword vector of two signed words

__ev64_fs__ 8 doubleword vector of two single-precision
floats

__ev64_u64__ 8 doubleword 1 unsigned doubleword

__ev64_s64__ 8 doubleword 1 signed doubleword

__ev64_opaque__ 8 doubleword any of the above

ATR-LONG-DOUBLE-IS-DOUBLE

Table 3-10. Long Double Is Double Type

Type ISO C Types sizeof Alignment Description
long double
is double

long double 8 doubleword double-precision float

ATR-LONG-DOUBLE-IS-DOUBLE || ATR-LONG-DOUBLE-IBM

This ABI provides the following choices for implementation of long double in compilers and systems:

ATR-LONG-DOUBLE-IS-DOUBLE

• Do not support any floating-point types with greater precision than double. In this case, long
doubles and doubles have the same size and precision.

8

Chapter 3. Low Level System Information

3.1.2.3. Aggregates and Unions

The following are the rules for aggregates (structures and arrays) and unions that apply to their alignment
and size.

• The entire aggregate or union must be aligned to its most strictly aligned member, which corresponds
to the member with the largest alignment, including flexible array members.

• Each member is assigned the lowest available offset that meets the alignment requirements of the
member. Depending on the previous member, internal padding can be required.

• The entire aggregate or union must have a size that is a multiple of its alignment. Depending on the
last member, tail padding can be required.

For the following figures, the big-endian byte offsets are located in the upper left corners, and the
little-endian byte offsets are located in the upper right corners.

Figure 3-1. Structure Smaller Than a Word

struct {
char c;

};

byte aligned, sizeof is 1

0 0
c

Figure 3-2. Structure With No Padding

struct {
char c;
char d;
short s;
int n;

};

word-aligned, sizeof is 8

little-endian

2 1 0
s d c

4
n

9

Chapter 3. Low Level System Information

big-endian

0 1 2
c d s

4
n

Figure 3-3. Structure With Internal Padding

struct {
char c;
short s;

};

halfword-aligned, sizeof is 4

little-endian

2 1 0
s pad c

big-endian

0 1 2
c pad s

Figure 3-4. Structure With Internal and Tail Padding

struct {
char c;
double d;
short s;

};

doubleword-aligned, sizeof is 24

little-endian

1 0
pad c

4
pad

8
d

12
d

18 16
pad s

20
pad

10

Chapter 3. Low Level System Information

big-endian

0 1
c pad

4
pad

8
d

12
d

16 18
s pad

20
pad

Figure 3-5. Union Allocation

union {
char c;
short s;
int j;

};

word-aligned, sizeof is 4

little-endian

1 0
pad c

2 0
pad s

0
j

big-endian

0 1
c pad

0 2
s pad

0
j

3.1.2.4. Bit-fields

Bit-fields can be present in definitions of C structures and unions. These bit-fields define whole objects
within the structure or union where the number of bits in the bit-field is specified.

11

Chapter 3. Low Level System Information

In the following table, a signed range goes from -(2(w - 1)) to (2(w - 1)) - 1 and an unsigned range goes from 0
to (2w) - 1.

Table 3-11. Bit-Field Types

Bit-field Type Width (w)
_Bool 1

signed char 1 to 8

unsigned char

signed short 1 to 16

unsigned short

signed int 1 to 32

signed long

unsigned int

unsigned long

enum

signed long long 1 to 64

unsigned long long

Bit-fields can be signed or unsigned of type short, int, long, or long long. However, bit-fields shall have
the same range for each corresponding type; for example, signed short must have the same range as
unsigned short. All members of structures and unions must comply with the size and alignment rules
including bit-fields. The following list of size and alignment rules additionally apply to bit-fields:

• The allocation of bit-fields is determined by the system endianess. For little-endian implementations
the bit allocation is from the least significant (right) end to the most significant (left) end. The reverse
is true for big-endian implementations; the bit allocation is from most significant (left) end to the least
significant (right) end.

• A bit-field cannot cross its unit boundary; it must occupy the storage unit allocated for its declared
type.

• If there is enough space within a storage unit, bit-fields must share the storage unit with other structure
members, including members that are not bit-fields. Clearly all the structure members occupy different
parts of the storage unit.

• The types of unnamed bit-fields have no effect on the alignment of a structure or union. However the
offsets of an individual bit-field’s member must comply with the alignment rules. An unnamed
bit-field of zero width causes sufficient padding (possibly none) to be inserted for the next member, or
the end of the structure if there are no more nonzero width members, to have an offset from the start of
the structure that is a multiple of the size of the declared type of the zero-width member.

The byte offsets for structure and union members are shown in the examples below. The little-endian
byte offsets are given in the upper right corners, and the big-endian byte offsets are given in the upper left
corners. The bit numbers are given in the lower corners.

12

Chapter 3. Low Level System Information

Table 3-12. Bit Numbering for 0x01020304

0 3 1 2 2 1 3 0

01 02 03 04

0 7 8 15 16 23 24 31

Figure 3-6. Simple Bit-field Allocation

struct {
int j : 5;
int k : 6;
int m : 7;

};

word-aligned, sizeof is 4

little-endian

0
pad m k j

0 13 14 20 21 26 27 31

big-endian

0
j k m pad

0 4 5 10 11 17 18 31

Figure 3-7. Bit-Field Allocation With Boundary Alignment

struct {
short s : 9;
int j : 9;
char c;
short t : 9;
short u : 9;
char d;

};

word-aligned, sizeof is 12

13

Chapter 3. Low Level System Information

little-endian

3 0
c pad j s

0 7 8 13 14 22 23 31

5
pad u pad t

0 6 7 15 16 22 23 31

9 8
pad d

0 23 24 31

big-endian

0 3
s j pad c

0 8 9 17 18 23 24 31

4 6
t pad u pad

0 8 9 15 16 24 25 31

8 9
d pad

0 7 8 31

Figure 3-8. Bit-Field Allocation With Storage Unit Sharing

struct {
char c;
short s : 8;

};

halfword-aligned, sizeof is 2

little-endian

1 0
s c

0 7 8 15

big-endian

0 1
c s

0 7 8 15

Figure 3-9. Bit-Field Allocation In A Union

union {

14

Chapter 3. Low Level System Information

char c;
short s : 8;

};

halfword-aligned, sizeof is 2

little-endian

1 0
pad c

0 7 8 15

1 0
pad s

0 7 8 15

big-endian

0 1
c pad

0 7 8 15

0 1
s pad

0 7 8 15

Figure 3-10. Bit-Field Allocation With Unnamed Bit-Fields

struct {
char c;
int : 0;
char d;
short : 9;
char e;

};

byte aligned, sizeof is 9

little-endian

1 0
:0 c

0 23 24 31

6 4
pad :9 pad d

0 6 7 15 16 23 24 31

8
e

24 31

15

Chapter 3. Low Level System Information

big-endian

0 1
c :0

0 7 8 31

4 6
d pad :9 pad

0 7 8 15 16 24 25 31

8
e

0 7

Note: In Figure 3-10 the alignment of the structure is not affected by the unnamed short and int
fields. The named members are aligned relative to the start of the structure. However, it is possible
that the alignment of the named members is not on optimum boundaries in memory. For instance, in
an array of the structure in Figure 3-10, the d members will not all be on 4-byte (integer) boundaries.

3.2. Function Calling Sequence
The standard sequence for function calls is outlined in this section. The layout of the stack frame, the
parameter passing convention, and the register usage is also detailed in this section. Standard library
functions use these conventions, except as documented for the register save and restore functions.

The conventions given in this chapter are adhered to by C programs. Further information on the
implementation of C is given in Section 3.3.

Note: While it is recommended that all functions use the standard calling sequence, the
requirements of the standard calling sequence are only applicable to global functions. Different
calling sequences and conventions can be employed by local functions which cannot be reached
from other compilation units, if they comply with the stack back trace requirements.

ATR-LONG-DOUBLE-IS-DOUBLE

Note: If long double has the same representation as double, then all statements about how double
values are passed to and returned from functions also apply to long double, and all statements about
how _Complex double values are passed to and returned from functions also apply to _Complex
long double.

ATR-PASS-COMPLEX-AS-STRUCT

Note: For the purposes of the function calling sequence, the C99 _Complex types are treated as if
they were represented as a structure containing an array of size two of the corresponding floating
point types. That is, a _Complex float is passed to a function and returned from a function as if it
were represented as:

16

Chapter 3. Low Level System Information

struct
{
float real[2];

};

3.2.1. Registers
Programs and compilers may freely use all registers except those reserved for system use. The system
signal handlers are responsible for preserving the original values upon return to the original execution
path. Signals that can interrupt the original execution path are documented in (BA-OS) in the System V
Interface Definition.

The tables in Section 3.2.1.1 give an overview of the registers that are global during program execution.
The tables use three terms to describe register Preservation Rules:

nonvolatile

A caller can expect that the contents of all registers marked nonvolatile are valid after control
returns from a function call.

A callee shall save the contents of all registers marked nonvolatile prior to modification. The callee
must restore the contents of all such registers before returning to its caller.

volatile

A caller cannot trust that the contents of registers marked volatile have been preserved across a
function call.

A callee need not save the contents of registers marked volatile before modification.

limited-access

The contents of registers marked limited-access have special preservation rules. These registers
have mutability restricted to certain bit-fields as defined by the Power ISA. The individual bits of
these bit-fields are defined by this ABI to be limited-access.

Under normal conditions a caller can expect that these bits have been preserved across a function
call. Under the special conditions, indicated in Section 3.2.1.2, a caller shall expect that these bit
will have changed across function calls even if they have not.

A callee may only permanently modify these bits without preserving the state upon entrance to the
function if the callee satisfies the special conditions indicated in Section 3.2.1.2; otherwise, these
bits must be preserved before modification and restored before returning to the caller.

3.2.1.1. Register Roles

In the 32-bit Power Architecture, there are always 32 general-purpose registers, each 32 bits wide.
Throughout this document the symbol rN is used, where N is a register number, to refer to
general-purpose register N.

17

Chapter 3. Low Level System Information

Table 3-13. Register Roles

Register Preservation Rules Purpose
r0 volatile Optional in function linkage

r1 nonvolatile Stack frame pointer

r2 nonvolatile See the following table

r3-r6 volatile Parameter and return value

r7-r10 volatile Additional function parameters

r11-r12 volatile Optional in function linkage

r13 nonvolatile Small data area pointer

r14-r31 nonvolatile Local variables

LR volatile Link register

CTR volatile Loop count register

XER volatile Fixed point exception register

CR0-CR1 volatile Condition register fields

CR2-CR4 nonvolatile Condition register fields

CR5-CR7 volatile Condition register fields

Optional Function Linkage

A function cannot depend on the values of those registers optional in the function linkage (r0, r11, and
r12) because they may be altered by inter-library calls.

Stack Frame Pointer

The stack pointer always points to the lowest allocated valid stack frame. It must maintain quadword
alignment and grow toward the lower addresses. The contents of the word at that address always
points to the previously allocated stack frame. A called function is permitted to decrement it if
required. See Section 3.3.9 for additional information.

Small Data Area Pointer

Register r13 is the small data area pointer. Process start up code for executables that reference data in
the small data area with 16-bit offset addressing relative to r13 must load the base of the small data
area (the value of the dynamic linker-defined symbol _SDA_BASE_) into r13. Shared objects shall not
alter the value in r13. See Section 4.8 for more details.

Link Register

The link register contains the address a called function normally returns to. It is volatile across
function calls.

18

Chapter 3. Low Level System Information

Condition Register Fields

In the condition register, the bit-fields CR2, CR3, and CR4 are nonvolatile and the value on entry must
be restored on exit. The other bit-fields are volatile. The bit-field CR6 shall be set by the caller of a
variable argument list function as described in Section 3.2.4.

Register r2 shall contain the base of the small data area 2 (the value of the dynamic linker-defined
symbol _SDA2_BASE_) which is used for referencing the ELF sections named .PPC.EMB.sdata2 and
.PPC.EMB.sbss2, if either section exists in an executable. The small data area 2 base is an address such
that every byte in the two sections is within a signed 16-bit offset of that address, which is analogous to
the use of r13, as described previously, to contain _SDA_BASE_, which is the base of sections .sdata and
.sbss. A routine in a shared object shall not use r2. See Section 4.8.2 for more details.

Table 3-15. EABI Register Role for General-Purpose Register 2

Register Preservation Rules Purpose
r2 nonvolatile SDA2 (Small Data Area 2) pointer.

ATR-PASS-COMPLEX-IN-GPRS

Table 3-16. Register Roles for the _Complex float and _Complex double Types

Register Preservation Rules Purpose
r3-r10 volatile Used for _Complex float and _Complex double

parameters and return values.

ATR-CLASSIC-FLOAT

On Power Architecture processors that support Power ISA category Floating-point, there are always 32
floating-point registers, each 64 bits wide, and an associated special-purpose register to provide
floating-point status and control. Throughout this document the symbol fN is used, where N is a register

19

Chapter 3. Low Level System Information

number, to refer to floating-point register N.

Table 3-19. Floating-Point Register Roles for Binary Floating-Point Types

Register Preservation Rules Purpose
f0 volatile

f1 volatile Used for parameter passing and return values of
binary float types.

f2-f8 volatile Used for parameter passing of binary float types.

f9-f13 volatile

f14-f31 nonvolatile

FPSCR limited-access Floating point status and control register
limited-access bits. Preservation rules governing the
limited-access bits for the bit-fields [VE], [OE],
[UE], [ZE], [XE], and [RN] are presented in Section
3.2.1.2.

ATR-SOFT-FLOAT

Table 3-21. Soft-Float General-Purpose Register Roles for Binary Floating-Point Types

Register Preservation Rules Purpose
r3-r10 volatile Volatile parameter and return value registers for float,

double, and long double binary floating-point types.

If the parameters are within the first eight words of
the parameter list:

• Float values occupy a single GPR.

• Double values occupy adjacent GPRs.

• Long double values occupy four adjacent GPRs.

There are special rules governing how parameters
that span multiple GPRs should be split between
registers and the parameter save area outlined in
Section 3.2.3.

ATR-SPE

The ISA Signal Processing Engine (SPE) category provides upper words for the 32 general-purpose
registers, thus allowing them to be used in SPE APU operations to hold two 32-bit words. The Signal
Processing Engine category also provides several special-purpose registers. The volatility of all 64-bit

20

Chapter 3. Low Level System Information

registers is the same for the upper and lower word. If only the lower word is modified by a function, only
the lower word need be saved and restored.

Table 3-24. SPE Register Roles

Register Preservation Rules Purpose
SPEFSCR limited-access Signal processing and embedded floating-point status

and control register. Preservation rules governing the
limited-access bits for the bit-fields [FINXE],
[FINVE], [FDBZE], [FUNFE], [FOVFE], and
[FRMC] are presented in Section 3.2.1.2.

ACC volatile 64-bit SPE accumulator register.

3.2.1.2. Limited-Access Bits

The Power ISA identifies a number of registers which have mutability limited to the specific bit-fields
indicated in the following list:

ATR-CLASSIC-FLOAT

FPSCR [VE]

The Floating-Point Invalid Operation Exception Enable bit [VE] of the FPSCR register.

ATR-CLASSIC-FLOAT

FPSCR [OE]

The Floating-Point Overflow Exception Enable bit [OE] of the FPSCR register.

ATR-CLASSIC-FLOAT

FPSCR [UE]

The Floating-Point Underflow Exception Enable bit [UE] of the FPSCR register.

ATR-CLASSIC-FLOAT

FPSCR [ZE]

The Floating-Point Zero Divide Exception Enable bit [ZE] of the FPSCR register.

21

Chapter 3. Low Level System Information

ATR-CLASSIC-FLOAT

FPSCR [XE]

The Floating-Point Inexact Exception Enable bit [XE] of the FPSCR register.

ATR-CLASSIC-FLOAT

FPSCR [RN]

The Binary Floating-Point Rounding Control field [RN] of the FPSCR register.

ATR-SPE

SPEFSCR [FINXE]

The Embedded Floating-Point Round (Inexact) Exception Enable field [FINXE] of the SPEFSCR
register.

ATR-SPE

SPEFSCR [FINVE]

The Embedded Floating-Point Invalid Operation/Input Error Exception Enable field [FINVE] of
the SPEFSCR register.

ATR-SPE

SPEFSCR [FDBZE]

The Embedded Floating-Point Divide By Zero Exception Enable field [FDBZE] of the SPEFSCR
register.

ATR-SPE

SPEFSCR [FUNFE]

The Embedded Floating-Point Underflow Exception Enable field [FUNFE] of the SPEFSCR
register.

22

Chapter 3. Low Level System Information

ATR-SPE

SPEFSCR [FOVFE]

The Embedded Floating-Point Overflow Exception Enable field [FOVFE] of the SPEFSCR register.

ATR-SPE

SPEFSCR [FRMC]

The Embedded Floating-Point Rounding Mode Control field [FRMC] of the SPEFSCR register.

The bits composing these bit-fields are identified as limited-access because this ABI manages how they
are to be modified and preserved across function calls.

Limited-access bits may be changed across function calls only if the called function has specific
permission to do so as indicated by the following conditions.

A function without permission to change the limited-access bits across a function call shall save the
value of the register before modifying the bits and restore it before returning to its calling function.

Limited-Access Conditions

• Standard library functions expressly defined to change the state of limited-access bits are not
constrained by nonvolatile preservation rules, e.g., the fesetround() and feenableexcept()

functions.

• All other standard library functions shall save the old value of these bits on entry, change the bits for
their purpose, and restore the bits before returning.

• Where a standard library function such as qsort() calls functions provided by an application the
following rules shall be observed:

• The limited-access bits on entry to the first call to such a callback must have the values they had on
entry to the library function.

• The limited-access bits on entry to a subsequent call to such a callback must have the values they
had on exit from the previous call to such a callback.

• The limited-access bits on exit from the library function must have the values they had on exit from
the last call to such a callback.

• The compiler can directly generate code that saves and restores the limited-access bits.

• The values of the limited-access bits are unspecified on entry into a signal handler because a library or
user function can temporarily modify the limited-access bits when the signal was taken.

23

Chapter 3. Low Level System Information

• When setjmp() returns from a direct invocation, the limited-access bits must have the values they
had on entry to setjmp; when it returns from a call to longjmp(), the limited-access bits must have
the values they had on entry to longjmp().

ATR-CLASSIC-FLOAT

• C Library intrinsics, such as _FPU_SETCW(), may modify the limited-access bits of the FPSCR.

ATR-SPE

• The following intrinsics defined by the SPE PIM may change the limited-access bits of the SPEFCSR
register:

__ev_clr_spefscr_sovh() __ev_clr_spefscr_sov() __ev_clr_spefscr_finxs()

__ev_clr_spefscr_finvs() __ev_clr_spefscr_fdbzs() __ev_clr_spefscr_funfs()

__ev_clr_spefscr_fovfs() __ev_set_spefscr_frmc()

ATR-SOFT-FLOAT

• Any data stored internally by software floating-point code to describe rounding modes and enabled
exceptions is subject to the same rules as limited-access register bits.

Note: The unwinder does not need to make specific allowances for limited-access bits.

3.2.2. The Stack Frame
A function shall establish a stack frame if it requires the use of nonvolatile registers, its local variable
usage can’t be optimized into registers, or it calls another function. It need only allocate space for the
required stack frame elements, namely the backchain pointer, the LR save area, and padding to the
required alignment.

Figure 3-11 shows the relative layout of an allocated stack frame following a nonleaf function call, where
the stack pointer points to the backchain word of the caller’s stack frame. In general the stack pointer
always points to the backchain word of the most recently allocated stack frame.

24

Chapter 3. Low Level System Information

Figure 3-11. Stack Frame Organization

In Figure 3-11 the green areas indicate an optional save area of the stack frame. Refer to Section 3.2.2.2
for a description of the optional save areas described by this ABI.

3.2.2.1. General Stack Frame Requirements

The following general requirements apply to all stack frames:

• The stack shall be quadword-aligned.

• The minimum stack frame size shall be 16 bytes. A minimum stack frame consists of the first two
words (backchain word and LR save word), with padding to meet the 16-byte alignment requirement.

• There is no maximum stack frame defined.

• Padding shall be added to the local variable space of the stack frame to maintain the defined stack
frame alignment in the absence of register save areas.

25

Chapter 3. Low Level System Information

• The stack pointer (r1), shall always point to the lowest address word of the most recently allocated
stack frame.

• The stack shall start at high addresses and grow downward toward lower addresses.

• The lowest address word (the backchain word in Figure 3-11) shall point to the previously allocated
stack frame. An exception occurs with the first stack frame, which shall have a value of 0 (NULL).

• If required, the stack pointer shall be decremented in the called function’s prologue and restored in the
called function’s epilogue.

• The stack pointer shall be updated atomically so that, at all times, it points to a valid backchain word.
This update may be achieved in a number of ways, as indicated in Section 3.3.3.3.

• Before a function calls any other functions, it shall save the value of the LR register into the LR save
area of the caller’s stack frame.

Note: An optional frame pointer may be created if necessary (e.g., as a result of dynamic allocation
on the stack as described in Section 3.3.9) to address arguments or local variables.

A sample of a minimum stack frame allocation is demonstrated in Figure 3-12 containing these
requirements.

Figure 3-12. Example Minimum Stack Frame Allocation

stwu 1,-32(1) - Store backchain, decr SP
mflr 0 - Copy LR to R0
stw 0,36(1) - Store LR in previous LR save area

3.2.2.2. Optional Save Areas

This ABI provides a stack frame with a number of optional save areas. This section will indicate the
relative position of these save areas in relation to each other and the primary elements of the stack frame.

Because the back chain word of a stack frame must maintain quadword alignment the following save
area diagrams indicate that an optional special purpose padding element might be necessary near the
low-address end of a stack frame (above the link register save).

An optional alignment padding to quadword boundary element might be necessary near the high-address
end of the stack in order to quadword-align the low-address beginning of a register save area
immediately below it, e.g, Figure 3-18.

Register Save Areas

ATR-CLASSIC-FLOAT

Floating-Point Register Save Area

If a function is to change the value in any nonvolatile floating-point register frn it shall first save the
value frn in the Floating-Point Register Save Area in a doubleword located 8 × (32 - n) bytes before
the back chain word of the previous frame, as shown in Figure 3-13.

26

Chapter 3. Low Level System Information

Figure 3-13. General-Purpose and Floating-Point Register Save Areas

ATR-CLASSIC-FLOAT

General-Purpose Register Save Area (with floating-point registers available)

If a function is to change the value in any nonvolatile general-purpose register rn, it shall first save
the value of rn in the general register save area, in a word located 4 × (32 - n) bytes before the
low-addressed end of the Floating-Point Register Save Area, as shown in Figure 3-13.

CR Save Area

CR Save-Register Save Area

If a function changes the value in any nonvolatile field of the condition register, it shall first save the

27

Chapter 3. Low Level System Information

value in all the nonvolatile fields of the condition register in the CR Save Area, which is the word
below the low address end of the general register save area, as shown in Figure 3-15.

Figure 3-15. CR Save Area

ATR-CLASSIC-FLOAT

Figure 3-16. CR Save Area With Floating-Point Save Area

Figure 3-16 shows the location of the CR save area when a floating-point save area is present.

28

Chapter 3. Low Level System Information

Category Specific Save-Register Save Area

!ATR-VECTOR

The category-specific save-register save area is unnecessary.

Category-Specific Register Save Areas

!ATR-VECTOR

The section Category-Specific Register Save Areas has no defined elements.

Additional Category Specific Register Save Areas

ATR-SPE

SPE 64-bit General-Purpose Register Save Area

If a function changes the value in the upper word of any nonvolatile general-purpose register rn, it
shall first save the value of rn in the 64-bit general-purpose register save area, in a doubleword
located 8 × (32 - n) bytes before the low-addressed end of the CR save area (plus any required
padding) if the CR Save Area is present. Otherwise, it is located in a doubleword 8 × (32 - n) bytes
before the low-address end of the General-Purpose Register Save Area (plus any required padding).
The 64-bit General-Purpose Save Area shall have quadword alignment. While not technically
necessary, quadword alignment is required for congruence with AltiVec and VMX technology.

29

Chapter 3. Low Level System Information

Figure 3-18. SPE 64-bit General-Purpose Register Save Area

Note: The purpose of providing both 32-bit and 64-bit general register save areas is to reduce
the stack usage for routines that use only the lower word of some nonvolatile registers, and both
the lower and upper word of some other nonvolatile registers. A compiler may choose to save
and restore all 64 bits of each modified nonvolatile general-purpose register, as long as the
debugging information reflects this choice.

ATR-SPE

Note: If the compiler uses the 32-bit general save areas when possible, routines compiled in this
manner that do not use any of the 64-bit instructions in the SPE architecture should remain
Power Architecture EABI compliant (both in regards to stack layout, and in all other ways).

30

Chapter 3. Low Level System Information

Figure 3-19. Parameter Save Area and Local Variable Space

Parameter Save Area

Parameter Save Area

The Parameter Save Area shall be allocated by the caller, and shall be large enough to contain the
parameters needed by the caller. The calling function cannot expect that the contents of this save
area are valid when returning from the callee. Refer to Figure 3-19 for information on the location
of this space.

Local Variable Space

Local Variable Space

The Local Variable Space is used for allocation of local variables. If the Parameter Save Area is in
use, the Local Variable Space is located immediately above it, at a higher address, otherwise it is
located immediately above the LR Save word. There is no restriction on the size of this area. Refer
to Figure 3-19 for information on the location of this space.

3.2.3. Parameter Passing
For the Power Architecture, it is more efficient to pass arguments to functions in registers, rather than
through memory. For the Power Architecture, the following parameters can be passed in registers.

• Up to eight arguments can be passed in general-purpose registers r3 through r10

ATR-SPE

• Up to eight 64-bit doubleword vector arguments are passed in general-purpose registers.

31

Chapter 3. Low Level System Information

ATR-CLASSIC-FLOAT

• Up to eight floating-point arguments can be passed in floating-point registers f1 through f8.

If fewer arguments are needed, then the unused registers defined previously will contain undefined values
on entry to the called function.

If there are more arguments than registers, then a function must provide space for the arguments in its
stack frame. When this happens, only the minimum storage needed to contain the extra arguments needs
to be allocated in the stack frame.

The following algorithm describes where arguments are passed for the C language. In this algorithm,
arguments are assumed to be ordered from left (first argument) to right. The actual order of evaluation
for arguments is unspecified.

gr contains the number of the next available general-purpose register.

ATR-CLASSIC-FLOAT

fr contains the number of the next available floating-point register.

3.2.3.1. Parameter Passing Register Selection Algorithm

Note: The following types refer to the type of the argument as declared by the function prototype. The
argument values will be converted (if necessary) to the types of the prototype arguments before
passing them to the called function.

If a prototype is not present, or it is a variable argument prototype and the argument is after the
ellipsis, the type refers to the type of the data objects being passed to the called function.

• INITIALIZE: If the function return type requires a storage buffer, set gr = 4, else set gr = 3.

ATR-CLASSIC-FLOAT

Set fr = 1

Set starg to the address of parameter word 1.

• SCAN: If there are no more arguments, terminate. Otherwise, select one of the following depending
on the type of the next argument:

• SINGLE_GP:

• A single integer no more than 32 bits

32

Chapter 3. Low Level System Information

ATR-SOFT-FLOAT

• A single-precision floating-point value if prototype is present

ATR-SPE

• A 64-bit vector if the called function is not a variable-argument function

• A pointer to a data object

• A struct or union that shall be treated as a pointer to the data object, or to a copy of the data
object when necessary to enforce call-by-value semantics. Only if the caller can ascertain that the
data object is constant can it pass a pointer to the data object itself.

ATR-PASS-COMPLEX-AS-STRUCT

This pointer treatment includes complex single-precision, double-precision, and quad-precision
floating-point values.

If gr > 10, go to OTHER. Otherwise, load the argument value into general-purpose register gr, set
gr = gr + 1, and go to SCAN. Values shorter than 32 bits are sign-extended or zero-extended,
depending on whether they are signed or unsigned.

• DUAL_GP:

• A 64-bit integer

ATR-SOFT-FLOAT

• A double-precision floating-point value

ATR-SPE

• A 64-bit vector being passed to a variable-argument function

33

Chapter 3. Low Level System Information

ATR-PASS-COMPLEX-IN-GPRS

• A complex single-precision float

If gr > 9, go to OTHER. If gr is even, set gr = gr + 1. Load the lower-addressed word of the
argument into gr and the higher-addressed word into gr + 1, set gr = gr + 2, and go to SCAN.

• QUAD_GP:

ATR-PASS-COMPLEX-IN-GPRS

• A complex double-precision float

If gr > 7, go to OTHER. Load the words of the argument, in memory-address order, into gr, gr + 1,
gr + 2 and gr + 3, set gr = gr + 4, and go to SCAN.

ATR-CLASSIC-FLOAT

• SINGLE_FP:

• A single-precision floating-point value or a double-precision floating-point value

if fr > 8, go to OTHER. Otherwise load the argument into register fr, set fr to fr + 1, and go to
SCAN

• OTHER:

• Arguments not otherwise handled are passed in the parameter save area of the caller’s stack
frame. Most of the types handled in SINGLE_GP, as defined previously, are considered to have
4-byte size and alignment, with simple integer types shorter than 32 bits sign- or zero-extended to
32 bits. Long long arguments are considered to have 8-byte size and alignment. The same 8-byte
arguments that must go in aligned pairs or registers are 8-byte aligned on the stack.

ATR-PASS-COMPLEX-IN-GPRS

Complex single-precision float arguments are considered to have 8-byte size and alignment.

ATR-SPE

64-bit vector arguments are considered to have 8-byte size and alignment.

34

Chapter 3. Low Level System Information

Round starg up to a multiple of the alignment requirement of the argument and copy the
argument byte-for-byte, beginning with its lowest addressed byte, into starg, ..., starg + size - 1.
Set starg to starg + size, and go to SCAN.

Types handled in QUAD_GP, as defined previously, are only 4-byte aligned when passed on the
stack.

If gr > 9 and the type is DUAL_GP, or gr > 7 and the type is QUAD_GP, then set gr = 11 (to
prevent subsequent SINGLE_GPs from being placed in registers after DUAL_GP, QUAD_GP, or
EIGHT_GP arguments that would no longer fit in the registers).

3.2.3.2. Parameter Passing Examples

The following section provides some examples using the algorithm described in Section 3.2.3.1.

ATR-CLASSIC-FLOAT && ATR-LONG-DOUBLE-IBM || ATR-LONG-DOUBLE-IS-DOUBLE

Figure 3-20. Parameter Passing Example

typedef struct {
int a;
double dd;

} sparm;
sparm s, t;
int c, d, e;
long double ld;
double ff, gg, hh;

x = func(c, ff, d, ld, s, gg, t, e, hh);

35

Chapter 3. Low Level System Information

ATR-CLASSIC-FLOAT && ATR-LONG-DOUBLE-IS-DOUBLE

Table 3-27. Parameter Passing Using long double is double

Parameter Register Byte Offset In Parameter Save Area
c r3 (not stored in parameter save area)

d r4 (not stored)

ld f1 (not stored)

ptr to s r5 (not stored)

ff f2 (not stored)

gg f3 (not stored)

ptr to t r6 (not stored)

e r7 (not stored)

hh f4 (not stored)

ATR-SOFT-FLOAT && ATR-LONG-DOUBLE-IS-DOUBLE

Table 3-28. Parameter Passing Using long double is double and Soft-Float

Parameter Register Byte Offset In Parameter Save Area
c r3 (not stored in parameter save area)

ff r5,r6 (not stored)

d r7 (not stored)

ld r9,r10 (not stored)

ptr to s (none) 08-11 (stored in parameter save area)

gg (none) 16-23 (stored)

ptr to t (none) 24-27 (stored)

e (none) 28-31 (stored)

hh (none) 32-39 (stored)

ATR-SPE

Figure 3-22. SPE Parameter Passing Example

typedef struct {
int a;
double dd;

} sparm;
sparm s;
int c;
__ev64_opaque__ va, vb;

36

Chapter 3. Low Level System Information

float ff;
double gg;
x = func(c, ff, va, gg, vb, s);

ATR-SPE

Table 3-30. Parameter Passing of SPE Data Types

Parameter Register Byte Offset In Parameter Save Area
c r3 (not stored in parameter save area)

ff r4 (not stored)

va r5 (not stored)

gg r7, r8 (not stored)

vb r9 (not stored)

ptr to s r10 (not stored)

3.2.4. Variable Argument Lists
C programs that are intended to be portable across different compilers and architectures must use the
header file <stdarg.h> to deal with variable argument lists. This header file contains a set of macro
definitions that define how to step through an argument list. The implementation of this header file may
vary across different architectures, but the interface is the same.

C programs that do not use this variable argument list header file, and assume that all the arguments are
passed on the stack in increasing order on the stack are not portable, especially on architectures that pass
some of the arguments in registers. The Power Architecture is one of the architectures that passes some
of the arguments in registers.

ATR-CLASSIC-FLOAT

CR bit 6 must be set by a variable argument list function caller that passes any arguments in
floating-point registers. The recommended instruction to achieve this is: creqv 6,6,6. It is
recommended that CR bit 6 be cleared by variable argument list function callers that do not pass any
arguments in floating-point registers, using the instruction crxor 6,6,6.

The parameter list may be zero length and is only allocated when parameters are spilled.

37

Chapter 3. Low Level System Information

ATR-SPE

For variable argument functions, 64-bit vectors (both before and after the ellipsis) are passed in the low
words of two consecutive registers, in the same manner as long long variables.

3.2.5. Return Values

ATR-CLASSIC-FLOAT

Functions that return float or double values shall place the result in register f1. The float values will be
rounded to single-precision.

ATR-SOFT-FLOAT

Functions shall return single-precision float values in r3, and double-precision values shall be returned
with the low addressed word in r3 and the higher in r4.

ATR-SPE

Functions shall return values of 64-bit vector types in r3.

Functions that return values of the following list of types shall place the result in register r3 as signed or
unsigned integers as appropriate, sign extended or zero extended to 32 bits where necessary:

• char

• enum

• short

• int

• long

• pointer to any type.

• _Bool

Aggregates or unions whose size is less than or equal to eight bytes shall be returned in r3 and r4, as if
they were first stored in memory area and then the low-addressed word were loaded in r3 and the

38

Chapter 3. Low Level System Information

high-addressed word were loaded into r4. Bits beyond the last member of the structure or union are not
defined.

Functions that return structures or unions which do not conform to the requirements of being returned in
registers shall place the results in a storage buffer that has been pre-allocated by the caller. The address of
this storage buffer shall be passed as the first argument in register r3 as a hidden argument resulting in gr
being initialized to 4 as opposed to 3 in the argument passing algorithm in Section 3.2.3.1.

Functions that return values of type long long and unsigned long long shall place the result in registers r3
and r4. The lower addressed word shall be placed in register r3, and the higher addressed word shall be in
register r4.

ATR-PASS-COMPLEX-IN-GPRS

Functions that return values of type _Complex float shall place the results in registers r3 and r4. The
lower addressed word shall be placed in r3; the higher addressed word shall be in register r4.

ATR-PASS-COMPLEX-IN-GPRS

Functions that return values of type _Complex double shall place the results in registers r3 through r6,
from lowest to highest addressed words.

3.3. Coding Examples
The following ISO C coding examples are provided as illustrations of how operations may be done, not
how they shall be done, for calling functions, accessing static data, and transferring control from one part
of a program to another. They are shown as code fragments with simplifications to explain addressing
modes, not necessarily show the optimal code sequences or compiler output. The small data area is not
used in any of them.

The previous sections explicitly specify what a program, operating system, and processor may and may
not assume and are the definitive reference to be used.

In these examples, absolute code and position-independent code are referenced.

When instructions hold absolute addresses, a program must be loaded at a specific virtual address in
order to permit the absolute code model to work.

When instructions hold relative addresses, a program can be loaded at various positions in virtual
memory and is referred to as position-independent code model.

3.3.1. Code Model Overview
When a process image is created, an executable has fixed addresses.

39

Chapter 3. Low Level System Information

3.3.3. Function Prologue and Epilogue
A function’s prologue and epilogue is detailed in this section.

3.3.3.1. The Purpose of a Function’s Prologue

• Create a stack frame when required.

• Save any nonvolatile registers that are used by the function.

• Save any limited-access bits that are used by the function, per the rules described earlier.

3.3.3.2. The Purpose of a Function’s Epilogue

• Restore all registers and limited-access bits that were saved by the function’s prologue.

• Restore the last stack frame.

• Return to the caller.

3.3.3.3. Rules for Prologue and Epilogue Sequences

Set function prologue and function epilogue code sequences are not imposed by this ABI. There are
several rules that must be adhered to in order to ensure reliable and consistent call chain backtracing.

• Before a function calls any other function, it shall establish its own stack frame, whose size shall be a
multiple of 16 bytes, and shall save the link register at the time of entry in the LR save area of its
caller’s stack frame.

• The calling sequence does not restrict how languages leverage the local variable space of the stack
frame, and there is no restriction on the size of this section.

• The parameter save area shall be allocated by the caller, and shall be large enough to contain the
parameters needed by the caller. Its contents are not saved across function calls.

• In instances where a function’s prologue creates a stack frame, the backchain word of the stack frame
shall be updated atomically with the value of the stack pointer (r1). This task can be done by using one
of the following Store Word with Update instructions:

• Store Word with Update instruction with relevant negative displacement for stack frames that are
smaller than 32 KB.

• Store Word with Update Indexed instruction where the two’s complement size of the stack frame has
been computed, using addis and addi or ori instructions, and then loaded into a volatile register
for stack frames that are 32 KB or greater.

• The deallocation of a function’s stack frame must be an atomic operation. This task can be
accomplished by one of the following methods given below:

• Increment the stack pointer by the identical value that it was originally decremented in the prologue
when the stack frame was created.

40

Chapter 3. Low Level System Information

• Load the stack pointer (r1) with the value in the backchain word in the stack frame.

• If any nonvolatile registers are to be used by the function the contents of the register must be saved
into a register save area. See Section 3.2.2.2 for information on all of the optional register save areas.

Saving and/or restoring nonvolatile registers used by the function can be accomplished using in-line
code. Alternatively one of the system subroutines described in Section 3.3.4 may offer a more efficient
alternative to in-line code, especially in cases where there are many registers to be saved or restored.

Unlike some other processors that implement the Power Architecture embedded processors may support
load and store multiple Power Architecture instructions in little-endian mode. On big-endian
implementations they may or may not be slower than the register-at-a-time saves, but reduce the
instruction footprint.

Position independent functions which make external data references will need to load a nonvolatile
register with a pointer to a Global Offset Table as show in Figure 3-26. In cases where external data
references are only made from within conditional code the loading of a Global Offset Table pointer can
be delayed until it is needed.

3.3.4. Register Saving and Restoring Functions
This section describes functions that can be used to save and restore contents of nonvolatile registers.
The use of these routines, rather than performing these saves and restores inline in the prologue and
epilogue of functions, can help reduce code footprint.

This section details register saving and restoring functions. The calling conventions of these functions
are not standard and the executables or shared objects that use these functions must statically link them.
The specific calling convention for each of these functions is described in Section 6.1.2.

ATR-SPE && ATR-SOFT-FLOAT

The use of a merged register file removes the need for distinct routines for saving and restoring
floating-point registers. However, in order to conserve stack space, this ABI describes several new
routines to allow the compiler to use the minimum stack space for holding copies of nonvolatile registers.
See Section 3.3.4.1 for information on the routines.

ATR-SPE

For situations where stack space is not at a premium, the compiler can elect to only use the 64-bit save
and restore functions for functions that require some use of the upper halves of the registers, and
traditional 32-bit save and restore functions for code that uses only classic instructions.

There are several cases to consider with respect to saving/restoring nonvolatile registers for a function:

41

Chapter 3. Low Level System Information

• No nonvolatile registers need saving or restoring.

• Only 32-bit nonvolatile registers need to be saved or restored. In this case, the classic (32-bit) save and
restore functions, or the stmw and lmw instructions, can be used.

ATR-SPE

• Only 64-bit nonvolatile registers need to be saved or restored. In this case, 64-bit versions of the
classic save and restore functions can be used. There is no equivalent to stmw/lmw for both halves of a
64-bit register.

• A mixture of 32-bit and 64-bit nonvolatile registers need saving or restoring. To minimize complexity,
the 32-bit nonvolatile registers shall be contiguous and at the upper end of the registers (rN - r31). This
also allows the stmw and lmw instructions to still be used, if desired. The 64-bit nonvolatile registers
shall also be contiguous (rM - r(N - 1)). The registers are saved or restored by calling both a 32-bit
save and restore function and a 64-bit save and restore function.

Saving and restoring functions also have variants (_g for register save routines, _x and _t for register
restore routines) that bundle some common prologue and epilogue operations to reduce overhead and
code footprint by a few instructions. These are described in more detail in the following paragraphs.

The 32-bit save and restore functions restore consecutive 32-bit registers from register m through register
31.

ATR-SPE

The simple 64-bit save and restore functions restore consecutive 64-bit registers from register m through
register 31. The more complex (CTR-based) 64-bit save and restore functions save and restore
consecutive 64-bit registers from register m through register n, and use the value N - m + 1 in the CTR
register to determine how many registers to save.

Higher-numbered registers are saved at higher addresses within a save area.

All of the 32-bit save and restore functions in this section expect the address of the backchain word to be
contained in r11. The back chain word is the next word after the end of the 32-bit general register save
area. r11 is not modified by these functions.

ATR-SPE

The value held in r11 for the 64-bit save and restore functions varies on the type of function.

• All the non-CTR 64-bit save and restore functions described in this section expect r11 to contain the
address of the backchain word, adjusted by subtracting 144. The adjustment by 144 allows the
immediate form of the 64-bit load/store instructions to be used (they have an unsigned immediate).

• The CTR-based 64-bit save and restore functions described in this section expect the CTR to contain
the number of registers to save (1:18). Register r11 should be calculated by taking the 8-byte aligned

42

Chapter 3. Low Level System Information

address pointing to the doubleword beyond the 64-bit general register save area, adjusting it by
subtracting 8 times the last (highest) 64-bit nonvolatile register number to be saved or restored and
adding 8 × 13 = 104. These two adjustments allow positive offsets, and adjust so that the last register
saved is placed directly below the 32-bit general register save area. These two adjustments allow a
single routine, with fixed offsets, to be used across all potential cases. The doubleword beyond the
64-bit general-purpose register save area could be the low word of the 32-bit general-purpose register
save area, the CR save word, or a pad word, depending on the number of 32-bit registers saved and the
presence or absence of a CR save word.

ATR-SPE

These rules are summarized in the following table.

Table 3-33. SPE Save And Restore Rules

Function Type r11 Contents
save & restore 32-bit values (rM - r31) address of backchain

save & restore 64-bit values (rM - r31) address of backchain (or pad word below
CR save word if CR is saved) - 144

save & restore 64-bit values (rM - rN, where N != 32) address of low end of 32-bit save area/CR
save word/padding, adjusted by subtracting
(8 × N) and adding 104.

3.3.4.1. Details about the Functions

Each function described in this section is a family of 18 functions with identical behavior except for the
number and kind of registers affected.

ATR-SPE

The function names use the notation [32/64] to designate the use of a 32 for the 32-bit general-purpose
register functions and a 64 for the 64-bit general-purpose register functions. The suffix _m; designates
the portion of the name that would be replaced by the first register to be saved. That is, to save registers
18 through 31, call _save32gpr_18().

There are two families of register saving functions:

• The following simple register saving functions save the indicated registers and return

43

Chapter 3. Low Level System Information

_savegpr_m()

ATR-CLASSIC-FLOAT

_savefpr_m()

ATR-SPE

_save32gpr_m()

_save64gpr_m() and _save64gpr_ctr_m()

• The following GOT register saving functions do not return directly:

_savegpr_m_g()

ATR-CLASSIC-FLOAT

_savefpr_m_g()

ATR-SPE

_save32gpr_m_g()

_save64gpr_m_g() and _save64gpr_ctr_m_g()

Instead these functions branch to _GLOBAL_OFFSET_TABLE_-4, relying on a blrl instruction at that
address to return to the caller of the save function with the address of a Global Offset Table in the link
register.

There are three families of register restoring functions.

• The following simple register restoring functions restore the indicated registers and return:

_restgpr_m()

ATR-CLASSIC-FLOAT

_restfpr_m()

44

Chapter 3. Low Level System Information

ATR-SPE

_rest32gpr_m() and _rest32gpr_m_t()

_rest64gpr_m() and _rest64gpr_ctr_m()

• The following exit functions restore the indicated registers and, relying on the registers being restored
to be adjacent to the backchain word, restore the link register from the LR save word, remove the stack
frame, and return through the link register:

_restgpr_m_x()

ATR-CLASSIC-FLOAT

_restfpr_m_x()

ATR-SPE

_rest32gpr_m_x()

_rest64gpr_m_x()

• The following tail functions restore the registers, place the LR save word into r0, remove the stack
frame, and return to their caller:

_restgpr_m_t()

ATR-CLASSIC-FLOAT

_restfpr_m_t()

ATR-SPE

_rest64gpr_m_t()

The caller can thus implement a tail call by moving r0 into the link register and branching to the tail
function. The tail function then detects the call from the function above the one that made the tail call
and, when done, returns directly to it.

45

Chapter 3. Low Level System Information

ATR-SPE

Note: There are no functions _rest64gpr_ctr_m_x() or _reset64gpr_ctr_m_t(), because the
backchain word is not directly above the location of the 64-bit save area in these cases. In this case,
the 64-bit registers shall be restored first, followed by a call to _rest32gpr_m_x() or
_rest32gpr_m_t().

Note: If a CR save word is used, even if only 64-bit registers are saved, _rest64gpr_m_x() and
rest64gpr_m_t() cannot be used, because the backchain word is not directly above the end of the
64-bit save area.

ATR-SPE

The following assembly code shows an example of an implementation.

_save32gpr_14: stw r14,-72(r11)
_save32gpr_15: stw r15,-68(r11)

...
_save32gpr_30: stw r30,-8(r11)
_save32gpr_31: stw r31,-4(r11)

blr

_save64gpr_14: evstdd r14,0(r11)
_save64gpr_15: evstdd r15,8(r11)

...
_save64gpr_30: evstdd r30,128(r11)
_save64gpr_31: evstdd r31,136(r11)

blr

_save64gpr_ctr_14: evstdd r14,0(r11)
bdz _save64gpr_ctr_done

_save64gpr_ctr_15: evstdd r15,8(r11)
bdz _save64gpr_ctr_done

...
_save64gpr_ctr_30: evstdd r30,128(r11)

bdz _save64gpr_ctr_done
_save64gpr_ctr_31: evstdd r31,144(r11)
_save64gpr_ctr_done: blr

_rest32gpr_14: lwz r14,-72(r11)
_rest32gpr_15: lwz r15,-68(r11)

...
_rest32gpr_30: lwz r30,-8(r11)
_rest32gpr_31: lwz r31,-4(r11)

blr

46

Chapter 3. Low Level System Information

_rest64gpr_14: evldd r14,0(r11)
_rest64gpr_15: evldd r15,8(r11)

...
_rest64gpr_30: evldd r30,128(r11)
_rest64gpr_31: evldd r31,136(r11)

blr

_rest64gpr_ctr_14: evldd r14,0(r11)
bdz _rest64gpr_ctr_done

_rest64gpr_ctr_15: evldd r15,8(r11)
bdz _rest64gpr_ctr_done

...
_rest64gpr_ctr_30: evldd r30,128(r11)

bdz _rest64gpr_ctr_done
_rest64gpr_ctr_31: evldd r31,136(r11)
_rest64gpr_ctr_done: blr

The GOT forms of the save routines (with a suffix of _g) all replace the blr with b

_GLOBAL_OFFSET_TABLE_ - 4.

The exit forms of the restore routines (with a suffix of _x) perform the following tasks in place of the
blr:

ATR-CLASSIC-FLOAT

_rest[fg]pr_m_x replaces the blr with lwz r0,4(r11)
mr r1,r11
mtlr r0
blr

ATR-SPE

_rest32gpr_m_x replaces the blr with lwz r0,4(r11)
mr r1,r11
mtlr r0
blr

_rest64gpr_m_x replaces the blr with lwz r0,148(r11)
addi r1,r11,144
mtlr r0
blr

47

Chapter 3. Low Level System Information

The tail functions (with a suffix of _t) are similar to the exit functions, except they skip the mtlr
instruction.

ATR-SPE

Note: The CTR-based 64-bit restore functions cannot perform the exit and tail optimizations as
implemented here, because the address of the backchain word and the return address are not at a
fixed offset from r11.

Note: For slightly higher performance in the restore function variants, the lwz of r0 and the restore of
r31 could be reordered (but the label for _rest[32/64]gpr_31*() shall now point to the lwz of r0,
not the load of r31).

ATR-SPE

The following assembly source code provides and an example restore function variant using
_rest32gpr_m_x().

...
_rest32gpr_30_x: lwz r30,-8(r11)
_rest32gpr_31_x: lwz r0,4(r11)

lwz r31,-4(r11)
mtlr r0
mr r1,r11 # Change to addi r1,r11,144

for _rest64gpr* blr

ATR-SPE

The following figure shows sample prologue and epilogue code with full saves of all the nonvolatile
general-purpose registers (r14 through r25 as 64-bit, r26 through r31 as 32-bit) and a stack frame size of
less than 32 KB. The variable len refers to the size of the stack frame. The example assumes that the
function does not alter the nonvolatile fields of the CR register and does no dynamic stack allocation.

Note: The following code assumes that the size of the executable or shared object in which the code
appears is small enough that a relative branch can reach from any part of the text section to any part
of the Global Offset Table or the Procedure Linkage Table. Because relative branches can reach ±
32 MB, this restriction is not considered serious. See Chapter 5 for more information.

function:
mflr r0 # Save return addr in caller’s frame
stw r0,4(r1) # . . .
li r0,12 # Set up CTR with number of 64-bit

registers to save.
mr r11,r1 # Set up r11 with backchain pointer
mtctr r0
stwu r1,-len(r1) # Establish new frame

48

Chapter 3. Low Level System Information

bl _save32gpr_26 # Save 32-bits of some GPRs
addi r11,r11,-120 # Adjust r11 down 24 bytes to bottom

of 32-bit area, and down another 96
bytes for the offset

mflr r31 # Place GOT ptr in r31
bl _save64gpr_ctr_14_g # Save 64-bit nonvolatile GPRs and

fetch the GOT ptr
Save CR here if necessary
Body of function

li r0,12 # Set up CTR with number of regs to
restore

mtctr r0
addi r11,r1,len-120 # Compute offset from low end of

32-bit save area
bl _rest64gpr_ctr_14 # Restore 64-bit GPRs

Restore CR here if necessary
addi r11,r1,len # Compute backchain word address
b _rest32gpr_26_x # Restore 32-bit GPRs and return

3.3.5. Profiling
This section describes how profiling (counting the number of times that a function is called) can be
performed on the Power Architecture. Profiling is not required for ABI compliance. If profiling is
supported, this implementation is one of those possible.

The code in Figure 3-24 can be inserted at the beginning of any function, before the execution of the
prologue code. The following is a high-level explanation of this code.

• The link register is saved in the LR save word of the caller stack frame.

• The register r0 contains the address of the count variable, which is initialized to 0.

• The function, _mcount(), gets called. This function increments the count variable. It also needs to
restore the link register to its original value so that it can handle the case where the profiled function
does not save the link register itself.

Figure 3-24. Profiling Example

.function_mc:
.data
.align 2
.long 0
.text

function:
mflr r0
addis r11,r0,.function_mc@ha
stw r0,4(r1)
addi r0,r11,.function_mc@1

49

Chapter 3. Low Level System Information

bl _mcount

NOTE: In the figure, the assembler expression symbol@l represents the lower-order 16 bits of the
value for symbol. The assembly expression symbol@ha represents the higher-order 16 bits of the
value for symbol, adjusted so that the addition of symbol@l and the shifted value of symbol@ha
added together create the correct value of symbol. The adjustment is needed because symbol@l is
a signed value.

3.3.6. Data Objects
Data objects with static storage duration are detailed here; stack resident data objects are omitted because
the virtual address of stack resident data objects are derived relative to the stack or frame pointers.

The only instructions that can access memory in the Power Architecture are load and store instructions.
Programs typically access memory by placing the address of the memory location into a register and
accessing the memory location indirectly through the registers because Power Architecture instructions
cannot hold 32-bit addresses directly. The values of symbols or their absolute virtual address are placed
directly into instructions for symbolic references in absolute code.

Absolute addresses are not permitted in position-independent instructions. The signed offset into the
Global Offset Table of the symbol is held in position-independent instructions that reference symbols.
Then the absolute address of the table entry for the particular symbol can be derived by adding the offset
to the appropriate Global Offset Table address using a general-purpose register. Figure 3-25 shows an
example of this method, r31 loaded in the sample prologue.

Examples of absolute and position-independent compilations are shown in the following figures. These
examples show the C language statements together with the generated assembly language. The
assumption for the following figures is that only executables can use absolute addressing while shared
objects can use position-independent code addressing. The figures are intended to demonstrate the
compilation of each C statement independent of its context, hence there can be redundant operations in
the code.

Figure 3-25. Absolute Load and Store Example

C code Assembly code
extern int src; .extern src
extern int dst; .extern dst
extern int *ptr; .extern ptr

.section ".text"
dst = src; lis 9,src@ha

lwz 0,src@l(9)
lis 9,dst@ha
stw 0,dst@l(9)

ptr = &dst; lis 11,ptr@ha
lis 9,dst@ha
la 0,dst@l(9)
stw 0,ptr@l(11)

*ptr = src; lis 9,ptr@ha
lwz 11,ptr@l(9)
lis 9,src@ha
lwz 0,src@l(9)

50

Chapter 3. Low Level System Information

stw 0,0(11)

Note: The offset in the Global Offset Table where the value of the symbol is stored is given by the
assembly syntax symbol@got. This syntax represents the address of the variable named symbol . The
offset for this assembly syntax cannot be any larger than 16 bits. In cases where the offset is greater
than 16 bits, the assembly syntax that is used is:

- High adjusted part of the offset: symbol@got@ha

- High part of the offset: symbol@got@h

- Low part of the offset: symbol@got@l

Figure 3-26. Small Model Position-Independent Load and Store

C code Assembly code
extern int src; .extern src
extern int dst; .extern dst
extern int *ptr; .extern ptr

.section ".text"
GOT pointer in r31

dst = src; lwz 9,src@got(31)
lwz 0,0(9)
lwz 9,dst@got(31)
stw 0,0(9)

ptr = &dst; lwz 9,ptr@got(31)
lwz 0,dst@got(31)
stw 0,0(9)

*ptr = src; lwz 9,ptr@got(31)
lwz 11,0(9)
lwz 9,src@got(31)
lwz 0,0(9)
stw 0,0(11)

Figure 3-27. Large Model Position-Independent Load and Store

C code Assembly code
extern int src; .extern src
extern int dst; .extern dst
int *ptr; .extern ptr

.section ".text"
Assumes GOT pointer in r31

dst = src; addis r6,r31,src@got@ha
lwz r6,src@got@l(r6)
addis r7,r31,dst@got@ha
lwz r7,dst@got@l(r7)
lwz r0,0(r6)
stw r0,0(r7)

ptr = & dst; addis r6,r31,dst@got@ha
lwz r0,dst@got@l(r6)
addis r7,r31,ptr@got@ha
lwz r7,ptr@got@l(r7)

51

Chapter 3. Low Level System Information

stw r0,0(r7)

*ptr = src; addis r6,r31,src@got@ha
lwz r6,src@got@l(r6)
addis r7,r31,ptr@got@ha
lwz r7,ptr@got@l(r7)
lwz r0,0(r6)
lwz r7,0(r7)
stw r0,0(r7)

Analogous to the symbol _SDA_BASE_ described in the SVR4 ABI, the symbol _SDA2_BASE_ shall
have a value such that the address of any byte in the ELF sections .PPC.EMB.sdata2 and
.PPC.EMB.sbss2 is within a signed 16-bit offset of _SDA2_BASE_’s value. See Section 4.5 for details.

The following description of putting data in sections .sdata, .sbss, .sdata2, .sbss2, .PPC.EMB.sdata0, and
.PPC.EMB.sbss0 makes a distinction between defined and external variables. In a source file, a variable
that is not stored on the stack is either a defined variable whose definition is in the file (e.g., int Var; in
C) or an external variable that is accessed by code in the file but is not defined in the file (e.g., extern
int ExVar;).

A high-level language processor, such as a compiler, shall have a means (e.g., an option) of generating an
ELF file that conforms to the following rules.

• Sections .sdata, .sbss, and .sdata2 shall contain at least the following:

• Entries for those defined variables that are globally visible scalars of size 8 or fewer bytes and whose
values will not be changed outside of the program (which excludes C variables that are volatile).

• Every such defined variable whose initial value is explicitly nonzero and might be changed by the
program shall have a .sdata entry that represents the variable.

• Every such defined variable whose value is initially 0 and might be changed shall have a .sbss
entry or a .sdata entry that represents the variable.

• If the relocatable object generated is not intended to be part of a shared object, every such
variable whose value cannot be changed by the program (such as a C variable that is const but not
volatile) shall have a .sdata2 entry that represents the variable; otherwise, such constant variables
shall have .sdata or .sbss entries, as appropriate.

• Entries produced by link editor resolution of relocation types (see Section 4.13).

• The only external variables accessed by the generated code as .sdata, .sbss, .sdata2, .sbss2,
.PPC.EMB.sdata0, or .PPC.EMB.sbss0 entries shall be as follows:

• External variables that are scalars of 8 or fewer bytes, whose values might be changed by the
program and whose values will not be changed outside of the program, shall be accessed as .sdata or
.sbss entries. So the address of such a variable will be within a 16-bit signed offset of _SDA_BASE_,
which in a shared object is the same value as _GLOBAL_OFFSET_TABLE_, and otherwise is loaded
in r13 by a conforming application.

• When the relocatable object is not to be part of a shared object, external variables that are scalars of
8 or fewer bytes, whose values cannot be changed by the program and whose values will not be
changed outside of the program, shall be accessed as .sdata2 or .sbss2 entries. In a shared object,

52

Chapter 3. Low Level System Information

those constant external variables shall be accessed as .sdata or .sbss entries. So the address of such a
variable, when not in a shared object, will be within a 16-bit signed offset of _SDA2_BASE_, which
is loaded into r2 by a conforming application.

For example, consider generating a relocatable object that will not be part of a shared object from the
following C code fragment.

int i_sdata = 1;
const int i_sdata2 = 2;
int i_sbss_or_sdata;
short s_sbss_or_sdata = 0;

extern double d_sdata_or_sbss;
extern const double d_sdata2;
extern double d_any_sdata_or_sbss[50];
extern const float f_any_sdata_or_sbss[200];
extern union my_union u_any_sdata_or_sbss;
extern const volatile float cvf_any_sdata_or_sbss;

int i_any_sdata[100] = { 3 };
static struct my_struct s_any_sdata = { 4, 6 };

volatile const float vcf_any_sdata[5] = { 5 };
int i_any_sbss_or_sdata[100];

static struct my_struct s_any_sbss_or_sdata;
volatile const float vcf_any_sbss_or_sdata[25];

If the code fragment defines all globally visible variables, a C compiler when conforming to the
previously defined rules would place i_sdata in .sdata, i_sdata2 in .sdata2, and i_sbss_or_sdata and
s_sbss_or_sdata in either .sbss or .sdata, while at the same time generating code that accesses external
variable d_sdata_or_sbss using an offset relative to the value of _SDA_BASE_ (which is in r13), accesses
d_sdata2 using an offset relative to _SDA2_BASE_ (which is in r2), and does not access any other
external variables as .sdata, .sbss, .sdata2, .sbss2, .PPC.EMB.sdata0, or .PPC.EMB.sbss0 entries.

3.3.7. Function Calls
Direct function calls are made in programs with the Power Architecture bl instruction. A bl instruction
can reach 32 MB backwards or forwards from the current position due to a self-relative branch
displacement in the instruction. Therefore the size of the text segment in an executable or shared object is
constrained when a bl instruction is used to make a function call. As depicted in the figure following, the
bl instruction is generally used by a compiler to call a function. Two possibilities exist for the location of
the function with respect to the caller:

• The called function is in the same executable or shared object as the caller. In this case the symbol is
resolved by the link editor and the bl instructions branches directly to the called function as in Figure
3-28.

53

Chapter 3. Low Level System Information

Figure 3-28. Direct Function Call

C code Assembly code

extern void function();
function(); bl function

• The called function is not in the same executable or shared object as the caller. In this case the symbol
cannot be directly resolved by the link editor. The link editor generates a branch to glue code.
Subsequently the dynamic linker changes the glue code to branch to the function requested by the
caller. See Procedure Linkage Table in Section 5.2.5.

For indirect function calls, the address of the function to be called is placed in the CTR register and a
bctrl instruction is used to perform the indirect branch as shown in Figure 3-29, Figure 3-30, and
Figure 3-31.

Figure 3-29. Absolute Indirect Function Call

C Code Asm Code

extern void function();
extern void (*ptrfunc) ();

.section .text
ptrfunc = function; lis r11,ptrfunc@ha

lis r9,function@ha
la r0,function@l(r9)
stw r0,ptrfunc@l(r11)

return (*ptrfunc)(); lis r9,ptrfunc@ha
lwz r0,ptrfunc@l(r9)
mtctr r0
bctrl

Branches less than or equal to ± 64 KB (16-bit signed offset ± 32 KB) may use small model addressing.
Figure 3-30 demonstrates how to make an indirect function call using small model position-independent
branching.

Figure 3-30. Small Model Position-Independent Indirect Function Call

C Code Asm Code

extern void function();
extern void (*ptrfunc) ();

.section .text
/* GOT pointer is in r11 */

ptrfunc = function; lwz r9,ptrfunc@got(r11)
lwz r0,function@got(r11)
stw r0,0(r9)

return (*ptrfunc)(); lwz r9,ptrfunc@got(r11)
lwz r0,0(r9)
mtctr r0

54

Chapter 3. Low Level System Information

bctrl

Branches in excess of ± 64 KB must use large model addressing. Figure 3-31 demonstrates how to make
an indirect function call using large model position-independent branching.

Figure 3-31. Large Model Position-Independent Indirect Function Call

C code Assembly code
--
extern void function();
extern void (*ptrfunc) ();

.section .got
/* got_base is the start of the .got section */
/* offset -0x8000 from the GOT pointer. */
.got_base = .+32768
.ptrfunc .long ptrfunc
.function .long function
.section ".text"

/* GOT pointer in r10 */
ptrfunc=function lwz 9,.ptrfunc@got-.got_base(r11)

lwz 0,.function@got-.got_base(r11)
stw 0,0(9)

(*ptrfunc) () lwz 9,.ptrfunc@got-.got_base(r11)
lwz 0,0(9)
mtctr 0
bctrl

3.3.8. Branching
The flow of execution in a program is controlled by the use of branch instructions. Branch instructions
can jump to locations up to 32 MB in either direction since they hold a value with a 64 MB range that is
relative to the current location of the program execution, which is defined by the architecture.

The following figure shows the model for branch instructions.

C code Assembly code
label: .L01:

... ...
goto label; b .L01

Branch selection is provided in C with switch statements. An address table is used by the compiler to
implement the switch statement selections in cases where the case labels satisfy grouping constraints.
Details that are not relevant are not shown by the use of simplifying constraints in the examples that
follow.

• r12 holds the selection expression.

• Case label constants begin at zero.

55

Chapter 3. Low Level System Information

• The assembler names .Lcasei, .Ldefault, and .Ltab are used for the case labels, the default, and the
address table respectively.

Absolute Switch Code

C code Assembly code
switch(j) cmplwi r12, 4
{ bge .Ldefault

case 0: slwi r12, 2
... addis r12, r12, .Ltab@ha
case 1: lwz r0, .Ltab@l(r12)
... mtctr r0
case 3: bctr
... .rodata
default: .Ltab:
... .long .Lcase0

} .long .Lcase1
.long .Ldefault
.long .Lcase3
.text

Position-Independent Switch Code, All Models

C code Assembly code
switch(j) cmplwi r12, 4
{ bge .Ldefault

case 0: bl .L1
... .L1: slwi r12, 2
case 1: mflr r11
... addi r12, r12,.Ltab-.L1
case 3: add r0, r12, r11
... mtctr r0
default: bctr
... .Ltab:

} b .Lcase0
b .Lcase1
b .Ldefault
b .Lcase3

3.3.9. Dynamic Stack Space Allocation
When allocated, a stack frame may be grown or shrunk dynamically as many times as necessary across
the lifetime of a function. Standard calling conventions must be maintained because a subfunction can be
called after the current frame is grown and that subfunction may stack, grow, shrink, and tear down a
frame between dynamic stack frame allocations of the caller. The following constraints apply when
dynamically growing or shrinking a stack frame:

• Maintain 16-byte alignment.

• Stack pointer adjustments shall be performed atomically so that at all times the value of the backchain
word is valid.

• Maintain addressability to the previously allocated local variables.

56

Chapter 3. Low Level System Information

Note: Using a frame pointer is the recognized method for maintaining addressability to arguments or
local variables. For correct behavior in the cases of setjmp() and longjmp() the frame pointer shall
be allocated in a nonvolatile general-purpose register.

Figure 3-32. Before Dynamic Stack Allocation

An example organization of a stack frame before a dynamic allocation.

Figure 3-33. Example code to allocate n bytes:

#define n 13
char *a = alloca(n);
rnd(x) = round x to be multiple of stack alignment
psave = size of parameter save area (may be zero).
p = rnd(sizeof(psave+8)) ; Offset to the start of the dynamic allocation

lwz 0,0(1) ; Load backchain word.
mr 31,1 ; Frame pointer to access previously allocated.
stwu 0,-rnd(n+15)(1) ; Store new backchain, quadword-aligned.
addi 3,1,p ; R3 = new data area following parmameter save area.

Note: Additional instructions might be needed to align the allocated data area or the stack pointer.
Additional instructions will be necessary for an allocation of variable size.

57

Chapter 3. Low Level System Information

Figure 3-34. After Dynamic Stack Allocation

An example organization of a stack frame after a dynamic allocation.

3.4. DWARF Definition
Although this ABI itself does not define a debugging format, DWARF (Debug with Arbitrary Record
Format) (see Section 1.1) is defined here for systems that implement the DWARF specification.

The DWARF specification is used by compilers and debuggers to aid source-level or symbolic
debugging. However, the format is not biased toward any particular compiler or debugger.

Per the DWARF specification, a mapping from Power Architecture registers to register numbers is
required as described in Table 3-34.

Special Purpose Registers or SPRs are mapped into DWARF as 100 plus their SPR number. Performance
Monitor Registers or PMRs are mapped into DWARF as 2048 plus the PMR number. Kernel debuggers
that display privileged registers are to use the following DWARF register number mapping.

All instances of the Power Architecture use the following mapping for encoding registers into DWARF.

58

Chapter 3. Low Level System Information

Table 3-34. Register Mappings

Register Name Number Abbreviation
General-purpose registers 0-31 R0-R31

Floating-point registers 32-63 F0-F31

Condition register 64 CR

Floating-point status and control
register

65 FPSCR

Machine state register 66 MSR

Accumulator 99 ACC

SPRs 100-1123 LR, CTR, etc.

Vector registers 1124-1155 V0-V31

Reserved 1156-1199

SPE high parts of GPRs 1200-1231

Reserved 1232-2047

Device control registers 3072-4095 DCRs

Performance monitor registers 4096-5120 PMRs

59

Chapter 4. Object Files

ATR-VLE

4.1. EABI Executable and Linking Format (ELF) Object
Files

Implementations supporting VLE mark a per-page TLB entry storage control bit to indicate that a
memory page holds either VLE Category or Embedded Category instructions. In this way the
instructions in both the VLE category (Book VLE) and the Embedded Category (Book III-E) of the
Power ISA can coexist in the same ELF binary.

Binding of VLE Category and Embedded Category memory pages to different memory bounds requires
separation of VLE Category and Embedded Category encodings into different ELF sections, allowing
easy identification for defining memory management page tables for run-time environments. Memory
pages of VLE Category and Embedded Category instructions can be freely intermixed.

The VLE encodings also require additional relocation types (see relocations 216 - 233 in Table 4-9),
which allow the link editor to resolve immediate and branch displacement fields in the instruction
encoding once a symbol or label address is known (at link time).

ATR-VLE

4.2. EABI Object File Processing
An EABI-conforming link editor shall accept as input EABI-conforming and SVR4-conforming
relocatable files, and it shall produce EABI-conforming shared object files.

4.3. ELF Header
The file class member of the ELF header identification array, e_ident[EI_CLASS], identifies the ELF
file as 32-bit encoded by holding the value 1, defined as class ELFCLASS32.

For a big-endian encoded ELF file the data encoding member of the ELF header identification array,
e_ident[EI_DATA], holds the value 2, defined as data encoding ELFDATA2MSB. For a little-endian
encoded ELF file it holds the value 1, defined as data encoding ELFDATA2LSB.

The ELF header e_flags member may hold the following bit masks that are applicable on the Power
Architecture.

60

Chapter 4. Object Files

Table 4-1. e_flags Bit Masks

Mask Value Description
EF_PPC_EMB 0x80000000 Power Architecture Embedded Flag.

EF_PPC_RELOCATABLE_LIB 0x00008000 Mark ELF file as relocatable (containing
Position Independent Code, see Section 5.1.1)
and intended for use in a library.

EF_PPC_RELOCATABLE 0x00010000 Mark ELF file as relocatable (containing
Position Independent Code, see Section 5.1.1).

EABI-conforming ELF files shall have EF_PPC_EMB set in the e_flags member.

The ELF header e_machine member identifies the architecture of the ELF file as the Power
Architecture by holding the value 20, defined as machine name EM_PPC.

4.4. Special Sections
For the Power Architecture the following special sections with their corresponding section types and
attributes apply:

.got

This section holds the Global Offset Table (GOT). Further information on accessing data in the
GOT is contained in Section 3.3.6. Information on the layout of the Global Offset Table is in Section
5.2.3.

Name Value

sh_name .got
sh_type SHT_PROGBITS
sh_flags SHF_ALLOC + SHF_WRITE

.plt

This section holds the Procedure Linkage Table (PLT) (see Section 5.2.5).

ATR-BSS-PLT

Name Value

sh_name .plt
sh_type SHT_NOBITS
sh_flags SHF_ALLOC + SHF_WRITE + SHF_EXECINSTR

.sdata

61

Chapter 4. Object Files

Initialized data can be held in this section, which is part of the Small Data Area (SDA). Further
information is found in Section 4.8.1.

Name Value

sh_name .sdata
sh_type SHT_PROGBITS
sh_flags SHF_ALLOC + SHF_WRITE

.sbss

Uninitialized data (set to zero on program execution) can be held in this section, which is part of the
SDA (Small Data Area). Further information is found in Section 4.8.1.

Name Value

sh_name .sbss
sh_type SHT_NOBITS
sh_flags SHF_ALLOC + SHF_WRITE

.PPC.EMB.apuinfo

If an APU is required this section will contain records describing which are required for a program
to execute properly. See Section 4.10 for further details.

Name Value

sh_name .PPC.EMB.apuinfo
sh_type SHT_NOTES
sh_flags 0

4.5. Special Embedded Sections
In addition to the special sections described in Section 4.4, an EABI-conforming ELF file shall be
allowed to contain the following special sections. The SVR4 ABI has reserved for this document any
section names beginning with .PPC.EMB.

.PPC.EMB.sdata2

This section holds initialized read-only small data that contributes to the program memory image.
The section can, however, be used to hold writable data.

If a link editor creates a .PPC.EMB.sdata2 section that combines a .PPC.EMB.sdata2 section whose
sh_flags is SHF_ALLOC with a .PPC.EMB.sdata2 section whose sh_flags is SHF_ALLOC +

62

Chapter 4. Object Files

SHF_WRITE, then the resulting .PPC.EMB.sdata2 section’s sh_flags value shall be
SHF_ALLOC + SHF_WRITE. See Section 4.8.2 for more details.

Name Value

sh_name .PPC.EMB.sdata2
sh_type SHT_PROGBITS
sh_flags SHF_ALLOC or

or
SHF_ALLOC + SHF_WRITE

sh_link SHF_UNDEF
sh_addralign Maximum alignment required by any data item in

.PPC.EMB.sdata2
sh_info 0
sh_entsize 0

.PPC.EMB.sbss2

The special section .PPC.EMB.sbss2 is intended to hold writable small data that contribute to the
program memory image and whose initial values are 0. See Section 4.8.2 for more details.

Name Value

sh_name .PPC.EMB.sbss2
sh_type SHT_NOBITS
sh_flags SHF_ALLOC + SHF_WRITE
sh_link SHF_UNDEF
sh_addralign Maximum alignment required by any data item in

.PPC.EMB.sbss2.
sh_info 0
sh_entsize 0

.PPC.EMB.sdata0

This section is intended to hold initialized small data that contribute to the program memory image
and whose addresses are all within a 16-bit signed offset of address 0. See Section 4.8.3 for more
details.

Name Value

sh_name .PPC.EMB.sdata0
sh_type SHT_PROGBITS
sh_flags SHF_ALLOC + SHF_WRITE
sh_link SHF_UNDEF
sh_addralign Maximum alignment required by any data item in

.PPC.EMB.sdata0
sh_info 0
sh_entsize 0

63

Chapter 4. Object Files

.PPC.EMB.sbss0

This section is intended to hold small data that contribute to the program memory image, whose
addresses are all within a 16-bit signed offset of address 0, and whose initial values are 0. See
Section 4.8.3 for further details.

Name Value

sh_name .PPC.EMB.sbss0
sh_type SHT_NOBITS
sh_flags SHF_ALLOC + SHF_WRITE
sh_link SHF_UNDEF
sh_addralign Maximum alignment required by any data item in

.PPC.EMB.sbss0.
sh_info 0
sh_entsize 0

.PPC.EMB.seginfo

The special section .PPC.EMB.seginfo provides a means of naming and providing additional
information about ELF segments (which are described by ELF program header table entries). A file
shall contain at most one section named .PPC.EMB.seginfo. See Section 4.12 for more details.

Name Value

sh_name .PPC.EMB.seginfo
sh_type SHT_PROGBITS
sh_flags 0
sh_link SHF_UNDEF

or
The section header table index of a section of type
SHT_STRTAB whose string table contains the null
terminated names to which entries in .PPC.EMB.seginfo
refer.

sh_addr 0
sh_addralign 0
sh_info 0
sh_entsize 12

4.6. Symbol Table

4.6.1. Symbol Values
An executable file that contains a symbol reference that is to be resolved dynamically by an associated

64

Chapter 4. Object Files

shared object will have a symbol table entry for that symbol. This entry will identify the symbol as
undefined by setting the st_shndx member to SHN_UNDEF.

An executable file that needs to compare the value of two symbol references will have a symbol table
entry for that symbol where the st_value member is nonzero.

If the st_value of an undefined symbol is nonzero, the loader must resolve every reference to the named
symbol to the same value. This insures that all pointers to the symbol will be identical. If st_value is
zero, the loader may resolve these symbols to different values, for example, to point directly to the
symbol in some cases or into the GOT in other cases. If no PLT entry is allocated for the symbol, then
st_value is zero.

ATR-BSS-PLT

Under the BSS-PLT ABI this st_value member holds the R_PPC_REL32 relocated address into the .plt
section for the PLT entry used to resolve the undefined symbol. This PLT entry contains executable code
used to dynamically resolve the address of the target symbol. The number of instructions in this code
stub varies on the distance to the target.

Referencing GOT nonlocal statics is shown in Figure 3-26 and Figure 3-27. Taking the address of
nonstatic function pointers is indicated by <symbol>@plt. Figure 3-30 and Figure 3-31 demonstrate
how to perform this action.

4.8. EABI Small Data Areas
Three distinct small data areas, each possibly containing both initialized and zero-initialized data, are
supported by the Embedded ABI, and are summarized in the following table.

Table 4-2. EABI Small Data Areas Summary

Section Names Register or
Value

Symbol Shared Object
Addressability?

.sdata r13 _SDA_BASE_ local data only

.sbss

.PPC.EMB.sdata2 r2 _SDA2_BASE_ no

.PPC.EMB.sbss2

.PPC.EMB.sdata0 0 n/a no

.PPC.EMB.sbss0

In both shared objects and executables, the small data areas straddle the boundary between initialized
and uninitialized data in the Data segment. The usual order of sections in the Data segment, some of
which may be empty, is shown in Figure 4-3.

65

Chapter 4. Object Files

Figure 4-3. Section Ordering In the EABI

.rodata

.PPC.EMB.sdata2

.PPC.EMB.sbss2

.data

.got

.sdata

.sbss

.plt

.bss

All three small data areas can contain at most 64 KB of data items. All areas may hold both local and
global data items in executables. In shared objects, .sdata/.sbss may only hold local data items, and the
other two areas are not permitted. These areas are not permitted to hold values that might be changed
outside of the program (that is, volatile variables).

Compilers may generate short-form, one-instruction references with 16-bit offsets for all data items that
are in these six sections. Placing more data items in small data areas usually results in smaller and faster
program execution.

These areas together provide up to 192 KB of data items that can be addressed in a single instruction:
two 64-KB regions that can be placed anywhere in the address space but typically in standard locations
(see Section 4.8.1), and one 64 KB region straddling address 0 (32 KB at addresses 0xFFFF_8000
through 0xFFFF_FFFF, and 32 KB at addresses 0x0000_0000 through 0x0000_7FFF).

Because the sizes of these areas are limited, compilers that support small data area relative addressing
typically determine whether or not an eligible data item is placed in the small data area based on its size.
Under this scheme, all data items less than or equal to a specified size (the default is usually 8 bytes) are
placed in the small data area. Initialized data items are placed in one of the .data sections, uninitialized
data items in one of the .sbss sections. If the default size results in a small data area that is too large to be
addressed with 16-bit relative offsets, the link editor fails to build the executable file or shared object file,
and some of the code that makes up the file must be recompiled with a smaller value for the size criterion.

This ABI does not preclude a compiler from using profiling information or some form of heuristics,
rather than purely data item size, to make more informed decisions about which data items should be
placed in these regions.

4.8.1. Small Data Area (.sdata and .sbss)
The small data area is part of the data segment of an executable program. It contains data items within
the .sdata and .sbss sections, which can be addressed with 16-bit signed offsets from the base of the small
data area.

Only data items with local (nonglobal) scope may appear in the small data area of a shared object. In a
shared object the small data area follows the Global Offset Table, so data in the small data area can be
addressed relative to the GOT pointer. However, in this case, the small data area is limited in size to no
more than 32 KB, and less if the global offset table is large.

For executable files, up to 64 KB of data items with local or global scope can be placed into the small
data area. In an executable file, the symbol _SDA_BASE_ (small data area base) is defined by the link
editor to be an address relative to which all data in the .sdata and .sbss sections can be addressed with
16-bit signed offsets or, if there is neither a .sdata nor a .sbss section, the value 0. In a shared object,

66

Chapter 4. Object Files

_SDA_BASE_ is defined to have the same value as _GLOBAL_OFFSET_TABLE_. The value of
_SDA_BASE_ in an executable is normally loaded into r13 at process initialization time, and r13
thereafter remains unchanged. In particular, shared objects shall not change the value in r13.

In executables, references to data items in the .sdata or .sbss sections are relative to r13; in shared
objects, they are relative to a register that contains the address of the Global Offset Table.

4.8.2. Small Data Area 2 (.PPC.EMB.sdata2 and
.PPC.EMB.sbss2)
Analogous to the symbol _SDA_BASE_ described in the SVR4 ABI, the symbol _SDA2_BASE_ shall
have a value such that the address of any byte in the ELF sections .PPC.EMB.sdata2 and
.PPC.EMB.sbss2 is within a signed 16-bit offset of _SDA2_BASE_’s value (see Section 4.4).

The sum of the sizes of sections .PPC.EMB.sdata2 and .PPC.EMB.sbss2 in an ELF file shall not exceed
64 KB. A file shall contain at most one section named .PPC.EMB.sdata2 and at most one section named
.PPC.EMB.sbss2. In an executable file, data items with local or global scope can be placed into
.PPC.EMB.sdata2 or .PPC.EMB.sbss2. Sections .PPC.EMB.sdata2 and .PPC.EMB.sbss2 shall not
appear in a shared object.

If an executable file contains a .PPC.EMB.sdata2 section or a .PPC.EMB.sbss2 section, then a link editor
shall set the symbol _SDA2_BASE_ to be an address such that the address of any byte in
.PPC.EMB.sdata2 or .PPC.EMB.sbss2 is within a 16-bit signed offset of _SDA2_BASE_. If an executable
file does not contain .PPC.EMB.sdata2 or .PPC.EMB.sbss2, then a link editor shall set _SDA2_BASE_ to
0.

If a link editor creates a .PPC.EMB.sdata2 section that combines a .PPC.EMB.sdata2 section whose
sh_flags is SHF_ALLOC with a .PPC.EMB.sdata2 section whose sh_flags is SHF_ALLOC +
SHF_WRITE, then the resulting .PPC.EMB.sdata2 section’s sh_flags value shall be SHF_ALLOC +
SHF_WRITE.

4.8.3. Small Data Area 0 (.PPC.EMB.sdata0 and
.PPC.EMB.sbss0)
No symbol is needed for a base pointer for these sections (.PPC.EMB.sdata0 and .PPC.EMB.sbss0),
because all addressing can be relative to address 0 (an address register encoding of r0 means the value 0
in Power Architecture load and store instructions).

The sum of the sizes of sections .PPC.EMB.sdata0 and .PPC.EMB.sbss0 in an ELF file shall not exceed
64 KB. A file shall contain at most one section named .PPC.EMB.sdata0 and at most one section named
.PPC.EMB.sbss0. Data items with local or global scope can be placed into .PPC.EMB.sdata0 or
.PPC.EMB.sbss0. Sections .PPC.EMB.sdata0 and .PPC.EMB.sbss0 shall not appear in a shared object.

ATR-SPE

67

Chapter 4. Object Files

4.9. DWARF Additions
In order to provide debuggers with the ability to identify where __ev64_opaque__ variables are located,
several new DWARF operations have been added, as shown in the following table.

Table 4-3. DWARF Additions For __ev64_opaque__ Support

Operation Value Description
DW_OP_ev64_opaque_regn 0xe0-0xff The data object addressed is in the upper and

lower halves of register n, where n is 0 through
31.

ATR-SPE

4.10. APU Information Section
This section allows disassemblers and debuggers to properly interpret the instructions within the binary,
and could also be used by operating systems to provide emulation or error checking of the APU
revisions. The format matches that of typical ELF note sections, as shown in Table 4-4.

Table 4-4. Typical Elf Note Section Format

length of name (in bytes)

length of data (in bytes)

type

name (null-terminated, padded to 4-byte alignment)

data

For the .PPC.EMB.apuinfo section, the name shall be APUinfo\0, the type shall be 2, and the data shall
contain a series of words containing APU information, one per word as in Table 4-5 and Table 4-6. The
APU information contains two unsigned halfwords: the upper half contains the unique APU identifier,
and the lower half contains the revision of that APU.

68

Chapter 4. Object Files

Table 4-5. Object File a.o

Offset Value Comment
0 0x00000008 8 bytes in "APUinfo\0"

4 0x0000000C 12 bytes (3 words) of APU information

8 0x00000002 NOTE type 2

12 "APUinfo\0" string identifying this as APU information

20 0x00010001 APU #1, revision 1

24 0x00020003 APU #2, revision 3

28 0x00040001 APU #4, revision 1

Table 4-6. Object File b.o

Offset Value Comment
0 0x00000008 8 bytes in "APUinfo\0"

4 0x00000008 8 bytes (2 words) of APU information

8 0x00000002 NOTE type 2

12 "APUinfo\0" string identifying this as APU information

20 0x00010002 APU #1, revision 2

24 0x00040001 APU #4, revision 1

Linkers shall merge all .PPC.EMB.apuinfo sections in the individual relocatable files into one, with
merging of per-APU information as demonstrated in Table 4-7.

Table 4-7. Merged Object File b.o

Offset Value Comment
0 0x00000008 8 bytes in "APUinfo\0"

4 0x0000000C 12 bytes (3 words) of APU information

8 0x00000002 NOTE type 2

12 "APUinfo\0" string identifying this as APU information

20 0x00010002 APU #1, revision 2

24 0x00020003 APU #2, revision 3

28 0x00040001 APU #4, revision 1

Note: It is assumed that a later revision of any APU is compatible with an earlier one, but the
converse is not true. Thus, the resultant .PPC.EMB.apuinfo section requires APU #1 revision 2 or
greater to work, and will not work on APU #1 revision 1. If an APU revision breaks backwards
compatibility, it must obtain a new unique APU identifier.

69

Chapter 4. Object Files

Table 4-8. APU Identifiers

APU Identifier (16 Bits) APU/Extension
0x003f AltiVec

0x0040 ISEL

0x0041 PMR (Performance Monitor)

0x0042 RFMCI (Machine-check)

0x0043 CACHE_LOCK (Cache-locking)

0x0100 e500 SPE

0x0101 e500 SPFP/EFS

0x0102 e500 BRLOCK/BR_LOCK (Branch-locking/BTB locking)

0x0104 VLE

0x0000..0x003E Reserved for legacy use

0x0044..0x00FF Reserved

A link editor may optionally warn when different relocatable objects require different revisions of an
APU, because moving the revision up may make the executable no longer work on processors with the
older revision of the APU. In this example, the link editor could emit a warning like "Warning:bumping
APU #1 revision number to 2, required by b.o."

ATR-VLE

4.11. VLE Identification
The executable and linking format (ELF) allows processor-specific section header and program header
flag attributes to be defined. The following section header and program header flag attribute definitions
are used to mark ELF sections containing VLE instruction encodings.

#define SHF_PPC_VLE 0x10000000 /* section header flag */
#define PF_PPC_VLE 0x10000000 /* program header flag */

The SHF_PPC_VLE flag marks ELF sections containing VLE instructions. Similarly, the PF_PPC_VLE
flag is used by ELF program headers to mark program segments containing VLE instructions. If either
the SHF_PPC_VLE flag or the PF_PPC_VLE flag is set, then instructions in those marked sections are
interpreted as VLE instructions; Book E instructions reside in sections that do not have these flags set.

ELF sections setting the SHF_PPC_VLE flag that contain VLE instructions should also use the
SHF_ALLOC and SHF_EXECINSTR bits as necessary. Setting the SHF_PPC_VLE bit does not
automatically imply a section that is marked as allocate (SHF_ALLOC) or executable
(SHF_EXECINSTR). The link editor keeps sections marked as VLE (SHF_PPC_VLE) in separate
output sections that do not contain Book E instructions.

Similarly, ELF program headers setting the PF_PPC_VLE flag should use the PF_X, PF_W, and PF_R
flags to indicate executable, writable, or readable attributes. It is considered an error for a program
header with PF_PPC_VLE set to contain sections that do not have SHF_PPC_VLE set.

70

Chapter 4. Object Files

A program loader or debugger can then scan the section headers or program headers to detect VLE
sections in case anything special is required for section processing or downloading.

ATR-VLE

4.12. ROM Copy Segment Information Section
Often embedded applications copy the initial values for variables from ROM to RAM at the start of
execution. To facilitate this, a link editor resolves references to the application variables at their RAM
locations, but relocates the variable’s initial values to their ROM locations. An ELF segment whose raw
data (addressed by the program header entry’s p_offset field) consists of initial values to be copied to the
locations of application variables is a ROM copy segment. One purpose of .PPC.EMB.seginfo is to
define that one segment is a ROM copy of, and thus has the initial values for, a second segment.

The raw data for section .PPC.EMB.seginfo shall contain only 12-byte entries whose C structure is:

typedef struct {
Elf32_Half sg_indx;
Elf32_Half sg_flags;
Elf32_Word sg_name;
Elf32_Word sg_info;

} Elf32_PPC_EMB_seginfo;

where the structure members are defined as follows:

sg_indx

The index number of a segment in the program header table. Program header table entries are
considered to be numbered from 0 to n - 1, where n is the number of table entries.

sg_flags

A bit mask of flags. The only allowed flag shall be as shown in the following table.

Flat Name Value Allowed Flag Meaning

PPC_EMB_SG_ROMCOPY 0x0001 Segment indexed by sg_indx is a ROM copy
of the segment indexed by sg_info.

sg_name

The offset into the string table where the null terminated name for the segment indexed by
sg_indx> is found. The section index of the string table to be used is in the sh_link field of
.PPC.EMB.seginfo’s section header. If sh_link is SHN_UNDEF, then sg_name shall be 0 for all
.PPC.EMB.seginfo entries. An sg_name value of 0 shall mean that the segment indexed by
sg_indx has no name.

sg_info

Contains information that depends on the value of sg_flags. If the flag
PPC_EMB_SG_ROMCOPY is set in sg_flags, then sg_info shall be the index number of the

71

Chapter 4. Object Files

segment for which the segment indexed by sg_indx is a ROM copy; otherwise, the value of
sg_info shall be 0.

If one segment is a ROM copy of a second segment (based on information in section
.PPC.EMB.seginfo), then:

• The first segment’s p_type value shall be PT_LOAD.

• The second segment’s p_type value shall be PT_NULL.

• Under EABI extended conformance none of the relocation entries that a dynamic linker might resolve
shall refer to a location in the segment that is the ROM copy of another segment.

If the section exists, .PPC.EMB.seginfo shall contain at least one entry but need not contain an entry for
every segment. Entries shall be in the same order as their corresponding segments in the ELF program
header table (increasing values of sg_indx). Only one .PPC.EMB.seginfo entry shall be allowed per
segment.

A link editor may support creation of section .PPC.EMB.seginfo, and, if it supports creation, it may
support only segment naming, only ROM copy segments, or both.

4.13. Relocation Types

ATR-EABI-EXTENDED

Under the EABI support for dynamic linking, the GOT, and the PLT is considered EABI extended
conformance.

The relocation entries in a relocatable file are used by the link editor to transform the contents of said file
into an executable file or shared object file. The application and result of a relocation are similar for both.
Several relocatable files may be combined into one output file. The link editor merges the content of the
files, sets the value of all function symbols, and performs relocations.

The 32-bit Power Architecture uses Elf32_Rela relocation entries exclusively. A relocation entry may
operate upon a halfword, word, or doubleword. The r_offset member of the relocation entry
designates the first byte of the address affected by the relocation. The subfield of r_offset affected by a
relocation is implicit in the definition of the applied relocation type. The r_addend member of the
relocation entry serves as the relocation addend which is described per relocation formula.

A relocation type defines a set of instructions and calculations necessary to alter the subfield data of a
particular relocation field.

4.13.1. Relocation Fields
The following relocation fields identify a subfield of an address affected by a relocation.

Bit numbers appear at the bottom of the boxes. Byte numbers appear in the top of the boxes; big-endian
in the upper left corners and little-endian in the upper right corners. The byte order specified in a

72

Chapter 4. Object Files

relocatable file’s ELF header applies to all the elements of a relocation entry, the relocation field
definitions, and relocation type calculations.

word32

Specifies a 32-bit bit-field taking up 4 bytes maintaining 4-byte alignment unless otherwise
indicated.

Under the EABI, this field shall have no-alignment restrictions.

0 3 1 2 2 1 3 0
word32

0 31

word30

Specifies a 30-bit bit-field taking up bits 0-29 of a word, maintaining 4-byte alignment unless
otherwise indicated.

0 3 1 2 2 1 3 0
word30

0 29 30 31

low24

Specifies a 24-bit bit-field taking up bits 6-29 of a word, maintaining 4-byte alignment. The other
bits remain unchanged. A branch instruction is an example of this field.

0 3 1 2 2 1 3 0
low24

0 5 6 29 30 31

low21

Specifies a 21-bit bit-field occupying the least significant bits of a word with 4-byte alignment.

Under the EABI, this field shall have no-alignment restrictions.

0 3 1 2 2 1 3 0
low21

0 10 31

low14

Specifies a 14-bit bit-field taking up bits 16-29 and possibly bit 10 (branch prediction bit) of a word,
maintaining 4-byte alignment. The other bits remain unchanged. A conditional branch instruction is

73

Chapter 4. Object Files

an example usage.

0 3 1 2 2 1 3 0
low14

0 10 15 16 29 30 31

half16

Specifies a 16-bit bit-field taking up two bytes, maintaining 2-byte alignment. The immediate field
of an Add Immediate instruction is an example of this field.

Under the EABI, this field shall have no-alignment restrictions.

0 1 1 0
half16

0 15

ATR-SPE

4.13.2. SPE Specific Relocation Fields

mid5

Specifies a 5-bit bit-field occupying the most significant bits of the least-significant halfword of a
word with 4-byte alignment. This relocation field is used primarily for the SPE APU load/store
instructions.

0 3 1 2 2 1 3 0
mid5

0 15 16 20 21 31

mid10

Specifies a 10-bit bit-field occupying bits 11 through 20 of a word with 4-byte alignment. This
relocation field is used primarily for the SPE APU load/store instructions.

0 3 1 2 2 1 3 0
mid10

0 10 11 20 21 31

ATR-SPE

74

Chapter 4. Object Files

ATR-VLE

4.13.3. VLE Specific Relocation Fields

split20

20-bit bit-field with the 4 MSBs occupying bits 17 to 20, the next 5 bits occupying bits 11 to 15, and
the remaining 11 bits occupying bits 21 to 31.

In addition, bits 0 to 5 in the destination word are encoded with the binary value 011100, bit 16 is
encoded with the binary value 0.

Note: This relocation field specifies the opcode for the VLE e_li instruction, allowing the link
editor to force the encoding of the e_li instruction, potentially changing the user’s specified
instruction. This functionality supports small data area relocation types. (R_PPC_VLE_SDA21
and R_PPC_VLE_SDA21_LO).

0 5 6 10 11 15 16 17 20 21 31
011100 --- split20 0 split20 split20

4:8 0:3 9:19

split16a

16-bit bit-field with the 5 MSBs occupying bits 11 to 15 (the rA field) and the remaining 11 bits
occupying bits 21 to 31.

0 10 11 15 16 20 21 31
--- split16a --- split16a

0:4 5:15

split16d

16-bit bit-field with the 5 MSBs occupying bits 6 to 10 (the rD field) and the remaining 11 bits
occupying bits 21 to 31.

0 5 6 10 11 20 21 31
--- split16d --- split16d

0:4 5:15

bdh24

24-bit bit-field occupying bits 7 to 30 used to resolve branch displacements to half-word boundaries.

0 6 7 30 31
--- bdh24 --

75

Chapter 4. Object Files

bdh15

15-bit bit-field occupying bits 16 to 30 used to resolve branch displacements to half-word
boundaries.

0 15 16 30 31
--- bdh15 --

bdh8

8-bit bit-field occupying bits 8 to 15 of a half-word. This field is used by a 16-bit branch instruction.

0 7 8 15
--- bdh8

ATR-VLE

4.13.4. Relocation Notations
The following notations are used in the relocation table.

A

Represents the addend used to compute the value of the relocatable field.

B

Represents the base address at which a shared object file has been loaded into memory during
execution. Generally, a shared object file is built with a 0 base virtual address, but the execution
address will be different. See Program Header in the System V ABI for more information about the
base address.

G

Represents the offset into the Global Offset Table, relative to the _GLOBAL_OFFSET_TABLE_
symbol, at which the address of the relocation entry’s symbol will reside during execution. This
implies the creation of a .got section. See Section 3.3 and the Section 5.2.3 for more information.

Reference in a calculation to the value G implicitly creates a GOT entry for the indicated symbol.

L

Represents the section offset or address of the procedure linkage table entry for the symbol. This
implies the creation of a .plt section if one does not already exist. It also implies the creation of a
PLT entry for resolving the symbol. For an unresolved symbol the PLT entry points to a PLT

76

Chapter 4. Object Files

resolver stub. For a resolved symbol a Procedure Linkage Table entry holds the final effective
address of a dynamically resolved symbol (see Section 5.2.5).

P

Represents the place (section offset or address) of the storage unit being relocated (computed using
r_offset).

R

Represents the offset of the symbol within the section in which the symbol is defined (its
section-relative address).

S

Represents the value of the symbol whose index resides in the relocation entry.

Represents the value of the symbol whose index resides in the relocation entry’s r_info field.

T

Represents the offset from _SDA_BASE_ to the location in the .sdata section that the link editor
placed the address of the symbol whose index is in r_info. See the description for
R_PPC_EMB_SDAI16 in Section 4.13.6.

U

Represents the offset from _SDA2_BASE_ to the location in the .PPC.EMB.sdata2 section that the
link editor placed the address of the symbol whose index is in r_info. See the description for
R_PPC_EMB_SDA2I16 in Section 4.13.6.

V

Represents the offset to the symbol whose index is in r_info from the start of that symbol’s
containing section.

W

Represents the address of the start of the section containing the symbol whose index is in r_info.

X

Represents the offset from the appropriate base (_SDA_BASE_, _SDA2_BASE_, or 0) to where the
link editor placed the symbol whose index is in r_info. This notation is generalized for the T and
U cases.

Y

Represents a 5-bit value for the base register for the section where the link editor placed the symbol
whose index is in r_info. Acceptable values are: the value 13 for symbols in .sdata or.sbss, the
value 2 for symbols in .PPC.EMB.sdata2 or .PPC.EMB.sbss2, or the value 0 for symbols in
.PPC.EMB.sdata0 or .PPC.EMB.sbss0.

+

Denotes 32-bit modulus addition.

-

Denotes 32-bit modulus subtraction.

77

Chapter 4. Object Files

>>

Denotes arithmetic right-shifting.

||

Denotes concatenation of bits or bit-fields.

#lo(value)

Denotes the least significant 16 bits of the indicated value, i.e.,

#lo(x) = (x & 0xffff).

#hi(value)

Denotes bits 16 through 31 of the indicated value, i.e.,

#hi(x) = ((x >> 16) & 0xffff).

#ha(value)

Denotes the high adjusted value: bits 16 through 31 of the indicated value, compensating for #lo()
being treated as a signed number, i.e.,

#ha(x) = (((x >> 16) + ((x & 0x8000) ? 1 : 0)) & 0xffff)

_SDA_BASE_

A symbol defined by the link editor whose value in shared objects is the same as
_GLOBAL_OFFSET_TABLE_, and in executable programs is an address within the small data area.

_SDA2_BASE_

A symbol defined by the link editor whose value in executable programs is an address within the
small data 2 area. See Section 4.8 for more details.

_BRTAKEN

BRNTAKEN

Specify whether the branch prediction bit (bit 10) should indicate that the branch will be taken or
not taken, respectively. For an unconditional branch, the branch prediction bit must be 0.

The following rules apply to the relocation types defined in the relocation table described later:

• For relocation types in which the names contain 14 or 16, the upper 17 bits of the value computed
before shifting must all be the same. For relocation types whose names contain 24, the upper 7 bits of
the value computed before shifting must all be the same. For relocation types whose names contain 14
or 24, the low 2 bits of the value computed before shifting must all be zero.

ATR-VLE

• For relocation types associated with branch displacements, in which the name of the relocation type
contains 8, the upper 24 bits of the computed value before shifting must all be the same (either all
zeros or all ones — that is, sign-extended displacement). For relocation types in which the name
contains 15, the upper 17 bits of the computed value before shifting must all be the same. For
relocation types in which the name contains 24, the upper 7 bits of the computed value before shifting
must all be the same. For relocation types whose names contain 8, 15, or 24, the low 1-bit of the
computed value before shifting must be zero (half-word boundary).

78

Chapter 4. Object Files

ATR-EABI-EXTENDED

• EABI optional relocation types are marked with a percentage symbol (%) after their name. These are
provided for dynamic linking and for compatibility with existing vendor-defined relocations.

• The relocation types whose Field column entry contains an asterisk (*) are subject to failure if the
value computed does not fit in the allocated bits.

4.13.5. Relocation Types Table

Table 4-9. Relocation Table

Relocation Name Value Field Expression
R_PPC_NONE 0 none none

R_PPC_ADDR32 1 word32 S + A

R_PPC_ADDR24 2 low24* (S + A) >> 2

R_PPC_ADDR16 3 half16* S + A

R_PPC_ADDR16_LO 4 half16 #lo(S + A)

R_PPC_ADDR16_HI 5 half16 #hi(S + A)

R_PPC_ADDR16_HA 6 half16 #ha(S + A)

R_PPC_ADDR14 7 low14* (S + A) >> 2

R_PPC_ADDR14_BRTAKEN 8 low14* (S + A) >> 2

R_PPC_ADDR14_BRNTAKEN 9 low14* (S + A) >> 2

R_PPC_REL24 10 low24* (S + A - P) >> 2

R_PPC_REL14 11 low14* (S + A - P) >> 2
R_PPC_REL14_BRTAKEN 12 low14* (S + A - P) >> 2
R_PPC_REL14_BRNTAKEN 13 low14* (S + A - P) >> 2
R_PPC_GOT16 14 half16* G
R_PPC_GOT16_LO 15 half16 #lo(G)
R_PPC_GOT16_HI 16 half16 #hi(G)
R_PPC_GOT16_HA 17 half16 #ha(G)

ATR-EABI-EXTENDED
R_PPC_PLTREL24% 18 low24* (L + A - P) >> 2

79

Chapter 4. Object Files

R_PPC_COPY 19 none (see Section 4.13.6)
R_PPC_GLOB_DAT 20 word32 S + A (see Section 4.13.6)
R_PPC_JMP_SLOT 21 none (see Section 4.13.6)
R_PPC_RELATIVE 22 word32 B+A (see Section 4.13.6)

ATR-EABI-EXTENDED
R_PPC_LOCAL24PC% 23 low24* (see Section 4.13.6)

R_PPC_UADDR32 24 word32* S + A (see Section 4.13.6)
R_PPC_UADDR16 25 half16* S + A (see Section 4.13.6)
R_PPC_REL32 26 word32* S + A - P
R_PPC_PLT32 27 word32* L
R_PPC_PLTREL32 28 word32* L-P
R_PPC_PLT16_LO 29 half16 #lo(L)
R_PPC_PLT16_HI 30 half16 #hi(L)
R_PPC_PLT16_HA 31 half16 #ha(L)
R_PPC_SECTOFF 33 half16* R + A
R_PPC_SECTOFF_LO 34 half16 #lo(R + A)
R_PPC_SECTOFF_HI 35 half16 #hi(R + A)
R_PPC_SECTOFF_HA 36 half16 #ha(R + A)
R_PPC_ADDR30 37 word30 (S + A - P) >> 2

80

Chapter 4. Object Files

Table 4-10. Relocation Table - Continued

Relocation Name Value Field Expression
38

... Assigned to the PowerPC 64-bit
ABI.

66

67

... Assigned to the TLS ABI.

100

R_PPC_EMB_NADDR32 101 word32 (A - S)
R_PPC_EMB_NADDR16 102 half16* (A - S)
R_PPC_EMB_NADDR16_LO 103 half16 #lo(A - S)
R_PPC_EMB_NADDR16_HI 104 half16 #hi(A - S)
R_PPC_EMB_NADDR16_HA 105 half16 #ha(A - S)
R_PPC_EMB_SDAI16 106 half16* T (see Section 4.13.6)
R_PPC_EMB_SDA2I16 107 half16* U (see Section 4.13.6)
R_PPC_EMB_SDA2REL 108 half16* S + A-_SDA2_BASE_
R_PPC_EMB_SDA21 109 low21 Y || (X + A) (see Section 4.13.6)

R_PPC_EMB_MRKREF 110 none (see Section 4.13.6)
R_PPC_EMB_RELSEC16 111 half16* V + A
R_PPC_EMB_RELST_LO 112 half16 #lo(W + A)
R_PPC_EMB_RELST_HI 113 half16 #hi(W + A)
R_PPC_EMB_RELST_HA 114 half16 #ha(W + A)
R_PPC_EMB_BIT_FLD 115 word32* (see Section 4.13.6)
R_PPC_EMB_RELSDA 116 half16 X + A (see Section 4.13.6)

117

... Reserved for future use.

179

ATR-EABI-EXTENDED
R_PPC_DIAB_SDA21_LO% 180 low21 Y || #lo(X + A)
R_PPC_DIAB_SDA21_HI% 181 low21 Y || #hi(X + A)
R_PPC_DIAB_SDA21_HA% 182 low21 Y || #ha(X + A)
R_PPC_DIAB_RELSDA_LO% 183 half16 #lo(X + A)
R_PPC_DIAB_RELSDA_HI% 184 half16 #hi(X + A)
R_PPC_DIAB_RELSDA_HA% 185 half16 #ha(X + A)

81

Chapter 4. Object Files

186

... Reserved for future embedded
system use.

200

ATR-SPE
R_PPC_EMB_SPE_DOUBLE 201 mid5* (#lo(S + A)) >> 3
R_PPC_EMB_SPE_WORD 202 mid5* (#lo(S + A)) >> 2
R_PPC_EMB_SPE_HALF 203 mid5* (#lo(S + A)) >> 1
R_PPC_EMB_SPE_DOUBLE_SDAREL 204 mid5* (#lo(S + A-_SDA_BASE_)) >>

3
R_PPC_EMB_SPE_WORD_SDAREL 205 mid5* (#lo(S + A-_SDA_BASE_)) >>

2
R_PPC_EMB_SPE_HALF_SDAREL 206 mid5* (#lo(S + A-_SDA_BASE_)) >>

1
R_PPC_EMB_SPE_DOUBLE_SDA2REL 207 mid5* (#lo(S + A-_SDA2_BASE_)) >>

3
R_PPC_EMB_SPE_WORD_SDA2REL 208 mid5* (#lo(S + A-_SDA2_BASE_)) >>

2
R_PPC_EMB_SPE_HALF_SDA2REL 209 mid5* (#lo(S + A-_SDA2_BASE_)) >>

1
R_PPC_EMB_SPE_DOUBLE_SDA0REL 210 mid5* (#lo(S + A)) >> 3
R_PPC_EMB_SPE_WORD_SDA0REL 211 mid5* (#lo(S + A)) >> 2
R_PPC_EMB_SPE_HALF_SDA0REL 212 mid5* (#lo(S + A)) >> 1
R_PPC_EMB_SPE_DOUBLE_SDA 213 mid10* Y || ((#lo(X + A)) >> 3)
R_PPC_EMB_SPE_WORD_SDA 214 mid10* Y || ((#lo(X + A)) >> 2)
R_PPC_EMB_SPE_HALF_SDA 215 mid10* Y || ((#lo(X + A)) >> 1)

82

Chapter 4. Object Files

ATR-VLE
R_PPC_VLE_REL8 216 bdh8 (S + A - P) >> 1
R_PPC_VLE_REL15 217 bdh15 (S + A - P) >> 1
R_PPC_VLE_REL24 218 bdh24 (S + A - P) >> 1
R_PPC_VLE_LO16A 219 split16a #lo(S + A)
R_PPC_VLE_LO16D 220 split16d #lo(S + A)
R_PPC_VLE_HI16A 221 split16a #hi(S + A)
R_PPC_VLE_HI16D 222 split16d #hi(S + A)
R_PPC_VLE_HA16A 223 split16a #ha(S + A)
R_PPC_VLE_HA16D 224 split16d #ha(S + A)
R_PPC_VLE_SDA21 225 low21 Y || (X + A) (see Section

4.13.6)
split20

R_PPC_VLE_SDA21_LO 226 low21
split20

Y || #lo(X + A) (see
Section 4.13.6)

R_PPC_VLE_SDAREL_LO16A 227 split16a #lo(X + A)
R_PPC_VLE_SDAREL_LO16D 228 split16d #lo(X + A)
R_PPC_VLE_SDAREL_HI16A 229 split16a #hi(X + A)
R_PPC_VLE_SDAREL_HI16D 230 split16d #hi(X + A)
R_PPC_VLE_SDAREL_HA16A 231 split16a #ha(X + A)
R_PPC_VLE_SDAREL_HA16D 232 split16d #ha(X + A)
R_PPC_VLE_ADDR20 233 split20 S + A

234

... Reserved for future use.

248

!ATR-SECURE-PLT
249

... Assigned for use by the
Secure-PLT ABI.

252

253

... Reserved for future use.

255

83

Chapter 4. Object Files

4.13.6. Relocation Descriptions
The following list describes relocations which can require special handling or description.

R_PPC_GOT16*

These relocation types resemble the corresponding R_PPC_ADDR16* types, except that they refer
to the address of the symbol’s Global Offset Table entry and additionally instruct the link editor to
build a Global Offset Table.

R_PPC_PLTREL24

This relocation indicates that reference to a symbol should be resolved through a call to the
symbol’s Procedure Linkage Table entry. Additionally it instructs the link editor to build a
procedure linkage table for the executable or shared object if one is not created.

ATR-BSS-PLT

Under the BSS-PLT ABI this relocation type may be implemented as a direct branch and link into
the executable PLT slot which holds the absolute address (after resolution) of the specified symbol.
There is an implicit assumption that the Procedure Linkage Table for a shared object or executable
will be within ± 32 MB of an instruction that branches to it.

R_PPC_COPY

The link editor creates this relocation type for dynamic linking. Its offset member refers to a
location in a writable segment. The symbol table index specifies a symbol that should exist both in
the current relocatable file and in a shared object file. During execution, the dynamic linker copies
data associated with the shared object’s symbol to the location specified by the offset.

R_PPC_GLOB_DAT

This relocation type resembles R_PPC_ADDR, except that it sets a Global Offset Table entry to the
address of the specified symbol. This special relocation type allows determination of the
correspondence between symbols and Global Offset Table entries.

R_PPC_JMP_SLOT

The link editor creates this relocation type for dynamic linking. Its offset member gives the location
of a Procedure Linkage Table entry. The dynamic linker modifies the Procedure Linkage Table entry
to transfer control to the designated symbol’s address (see Section 5.2.5).

R_PPC_RELATIVE

The link editor creates this relocation type for dynamic linking. Its offset member gives a location
within a shared object that contains a value representing a relative address. The dynamic linker
computes the corresponding virtual address by adding the virtual address at which the shared object
was loaded to the relative address. Relocation entries for this type must specify 0 for the symbol
table index.

R_PPC_LOCAL24PC

This relocation type resembles R_PPC_REL24, except that it uses the value of the symbol within
the object, not an interposed value, for S in its calculation. The symbol referenced in this relocation

84

Chapter 4. Object Files

normally is _GLOBAL_OFFSET_TABLE_, which additionally instructs the link editor to build the
Global Offset Table.

R_PPC_UADDR*

These relocation types are the same as the corresponding R_PPC32_ADDR* types, except that the
datum to be relocated is allowed to be unaligned.

R_PPC_EMB_SDAI16

This instructs the link editor to create a 4-byte, word-aligned entry in the .sdata section containing
the address of the symbol whose index is in the relocation entry’s r_info field. At most one such
implicit .sdata entry shall be created per symbol per link, and only in an executable file or shared
object file. In addition, the value used in the relocation calculation shall be the offset from
_SDA_BASE_ to the symbol’s implicit entry. The relocation entry’s r_addend field value shall be 0.

R_PPC_EMB_SDA2I16

This instructs the link editor to create a 4-byte, word-aligned entry in the .PPC.EMB.sdata2 section
containing the address of the symbol whose index is in the relocation entry’s r_info field. At most
one such implicit .PPC.EMB.sdata2 entry shall be created per symbol per link, and only in an
executable file. In addition, the value used in the relocation calculation shall be the offset from
_SDA2_BASE_ to the symbol’s implicit entry. The relocation entry’s r_addend field value shall be
0.

ATR-SPE

R_PPC_EMB_SDA21

ATR-SPE

The most significant 11 bits at the address pointed to by the relocation entry shall be left unchanged.

The most significant 3 bits at the address pointed to by the relocation entry shall be left unchanged.

If the symbol whose index is in r_info is contained in .sdata or .sbss, then the link editor shall
place in the next most significant 5 bits the value 13 (for r13); if the symbol is in .PPC.EMB.sdata2
or .PPC.EMB.sbss2, then the link editor shall place in those 5 bits the value 2 (for r2); if the symbol
is in .PPC.EMB.sdata0 or .PPC.EMB.sbss0, then the link editor shall place in those 5 bits the value
0 (for r0); otherwise, the link shall fail. The least significant 16 bits of this field shall be set to the
address of the symbol plus the relocation entry’s r_addend value minus the appropriate base for
the symbol’s section: _SDA_BASE_ for a symbol in .sdata or .sbss, _SDA2_BASE_ for a symbol in
.PPC.EMB.sdata2 or .PPC.EMB.sbss2, or 0 for a symbol in .PPC.EMB.sdata0 or .PPC.EMB.sbss0.

Note: The source register in the ori, oris, xor, and xoris instructions (bits 6-10) are encoded
differently than the addi, addis, ld, and st instructions (bits 11-15). This relocation type is
appropriate for add and ld instructions, but not for or and xor instructions.

85

Chapter 4. Object Files

ATR-SPE

R_PPC_EMB_MRKREF

The symbol whose index is in r_info shall be in a different section from the section associated
with the relocation entry itself. The relocation entry’s r_offset and r_addend fields shall be
ignored. Unlike other relocation types, the link editor shall not apply a relocation action to a
location because of this type. This relocation type is used to prevent a link editor that does section
garbage collecting from deleting an important but otherwise unreferenced section.

ATR-SPE

R_PPC_EMB_BIT_FLD

The most significant 16 bits of the relocation entry’s r_addend field shall be a value between 0 and
31, representing a big-endian bit position within the entry’s 32-bit location (e.g., 6 means the sixth
most significant bit). The least significant 16 bits of r_addend shall be a value between 1 and 32,
representing a length in bits. The sum of the bit position plus the length shall not exceed 32. The
link editor shall replace bits starting at the bit position for the specified length with the value of the
symbol, treated as a signed entity.

ATR-SPE

R_PPC_EMB_RELSDA

The link editor shall set the 16-bits at the address pointed to by the relocation entry to the address of
the symbol whose index is in r_info plus the value of r_addend minus the appropriate base for
the section containing the symbol: _SDA_BASE_ for a symbol in .sdata or .sbss, _SDA2_BASE_ for a
symbol in .PPC.EMB.sdata2 or .PPC.EMB.sbss2, or 0 for a symbol in .PPC.EMB.sdata0 or
.PPC.EMB.sbss0. If the symbol is not in one of those sections, the link shall fail.

ATR-VLE

R_PPC_VLE_SDA21

The link editor computes a 21-bit value with the 5 MSBs having the value 13 (for r13), 2 (for r2), or
0. If the symbol whose index is in r_info is contained in .sdata or .sbss, the link editor supplies a
value of 13; if the symbol is in .PPC.EMB.sdata2 or .PPC.EMB.sbss2, the link editor supplies a
value of 2; if the symbol is in .PPC.EMB.sdata0 or .PPC.EMB.sbss0, the link editor supplies a value
of 0; otherwise, the link fails. The 16 least significant bits of this 21-bit value are set to the address
of the symbol plus the relocation entry r_addend value minus the appropriate base for the symbol
section:

• _SDA_BASE_ for a symbol in .sdata or .sbss.

86

Chapter 4. Object Files

• _SDA2_BASE_ for a symbol in .PPC.EMB.sdata2 or .PPC.EMB.sbss2.

• 0 for a symbol in .PPC.EMB.sdata0 or .PPC.EMB.sbss0.

If the 5 MSBs of the computed 21-bit value are nonzero, the link editor uses the low21 relocation
field, where the 11 MSBs remain unchanged and the computed 21-bit value occupies bits 1131.
Otherwise, the 5 MSBs of the computed 21-bit value are zero, with the following results:

• The link editor uses the split20 relocation field, where only bits occupying 610 remain
unchanged.

• The 5 MSBs of the 21-bit value are ignored.

• The next most significant bit is copied to bit 11 and to bits 17 to 20 as a sign-extension.

• The next 4 most significant bits are copied to bits 12 to 15.

• The 11 remaining bits are copied to bits 21 to 31.

• In the destination word, bits 05 are encoded with the binary value 011100, and bit 16 is encoded
with the binary value 0.

Note: Use of the split20 relocation field forces the encoding of the VLE e_li instruction, which
can change the user’s specified instruction.

ATR-VLE

R_PPC_VLE_SDA21_LO

Like R_PPC_VLE_SDA21, except that the #lo() operator obtains the 16 LSBs of the 21-bit value.
The #lo() operator is applied after the address of the symbol plus the relocation entry r_addend

value is calculated, minus the appropriate base for the symbol’s section: _SDA_BASE_ for a symbol
in .sdata or .sbss, _SDA2_BASE_ for a symbol in .PPC.EMB.sdata2 or .PPC.EMB.sbss2, or 0 for a
symbol in .PPC.EMB.sdata0 or .PPC.EMB.sbss0. The R_PPC_VLE_SDA21 entry describes
applying the calculated 21-bit value to the destination word that uses either the low21 relocation
field or the split20 relocation field.

Note: If the opcode is changed, 27 bits are changed instead of 21.

ATR-VLE

Note: The relocations R_PPC_VLE_SDA21 and R_PPC_VLE_SDA21_LO are not for load and store
instructions (such as, e_lwz and e_stw), which should use the EABI relocation
R_PPC_EMB_SDA21. These relocations, as written here, only start with an e_add16i. A link editor
might convert the instruction to an e_li. Although other relocations do not specify the instructions
they apply to, it may be useful to know that these relocations can apply only to one instruction.

87

Chapter 4. Object Files

4.14. EABI Relocations and Linking
An EABI conforming link editor shall support all of the relocations types in Table 4-9 except for those
listed in Table 4-11.

The relocatable fields of EABI relocation types shall have no alignment restrictions as indicated in
Section 4.13.1.

Table 4-11. Relocation Types For EABI Extended Conformance

R_PPC_GOT16

R_PPC_GOT16_LO

R_PPC_GOT16_HI

R_PPC_GOT16_HA

R_PPC_PLT24

R_PPC_COPY

R_PPC_GLOB_DAT

R_PPC_JMP_SLOT

R_PPC_LOCAL24PC

R_PPC_PLT32

R_PPC_PLTREL32

R_PPC_PLT16_LO

R_PPC_PLT16_HI

R_PPC_PLT16_HA

ATR-EABI-EXTENDED

Under EABI extended conformance a link editor shall support all of the relocation types in Table 4-9,
including those listed in Table 4-11, and a dynamic linker shall support all relocation types appropriate to
dynamic linking.

A link editor shall not accept a relocation entry whose relocation type is not defined in Table 4-9.

ATR-EABI-EXTENDED

Under EABI extended conformance, a dynamic linker shall not process a relocation entry whose
relocation type is not defined in Table 4-9.

88

Chapter 5. Program Loading and Dynamic
Linking

5.3. EABI Program Loading and Dynamic Linking
Unlike the SVR4 ABI, an EABI-conforming entity shall not have program loading or program
interpreter requirements.

An EABI-compliant ELF file contains absolute load addresses and sizes for each of its segments. There
is no requirement that the dynamic linker follow the Read (PF_X), Write (PF_W), or Execute (PF_X)
segment flags in the program header when loading the executable file.

89

Chapter 6. Libraries

6.1. Library Requirements
This ABI doesn’t specify any additional interfaces for general-purpose libraries. However, certain
processor specific support routines are defined in order to ensure portability between ABI conforming
implementations.

Such processor specific support definitions concern floating-point alignment, register save/restore
routines, variable argument list layout and a limited set of data definitions.

6.1.1. C Library Conformance with Generic ABI

6.1.1.1. Malloc Routine Return Pointer Alignment

The malloc() routine must always return a pointer with the alignment of the largest supported data type
from the following list:

!ATR-LONG-DOUBLE-IBM && !ATR-DFP

• At least 8-byte (doubleword) aligned, as the returned pointer may be used for storing data items that
require 8-byte alignment.

6.1.1.2. Library Handling of Limited-access Bits in Registers

Requirements for the handling of limited-access bits in certain registers by standard library functions are
defined in Section 3.2.1.2.

6.1.2. Save and Restore Routines
All of the save and restore routines described in Section 3.3.4 are required. These routines use unusual
calling conventions due to their special purpose.

6.1.2.1. Save and Restore Routine Suffixes

The following suffix extensions describe the function templates in Section 6.1.2.2.

_m (save and restore function variable)

The variable _m represents the first register to be saved. That is, to save registers 18 to 31 using
32-bit saves, one would call save32gpr_18.

90

Chapter 6. Libraries

ATR-BSS-PLT

_g (save function qualifier)

GOT save functions are represented by the _g qualifier. These functions return to the caller of the
save function by branching to the blrl instruction held at _GLOBAL_OFFSET_TABLE_-4.

_x (restore function qualifier)

Exit restore functions are represented by the _x qualifier. These functions restore the specified
registers and use the link-register value in the calling function’s LR-save area to return to the
caller’s parent function after removing the caller’s stack frame.

_t (restore function qualifier)

Tail restore functions are represented by the _t qualifier. Given the following function call
sequence where function3 is a tail-call:

function1()
{

function2();
<further calls and code>

return;
}

function2()
{

_rest*_t();
return function3();

}

The tail restore functions are called from function2 and prepare the register state in function2 for a
tail-call to function3 that is to return directly to function1. They restore the specified registers for
function1 from function1’s stack frame and save the address of function1 from the LRSAVE word of
function1’s stack frame into R0 before returning control to function2. Function2 then sets the LR to
the address of function1 held in R0 and calls the tail function function3. Function3 will perform it’s
duty and then return directly to function1 rather than function2.

ATR_SPE

_ctr (save & restore function qualifier)

CTR register save and restore functions are represented by the _ctr qualifier. These functions set
the number of registers to be “saved to” or “restored from” into the CTR register.

91

Chapter 6. Libraries

6.1.2.2. Save and Restore Routine Templates

• _savegpr_m

!ATR-SECURE-PLT

• _savegpr_m_g

ATR-CLASSIC-FLOAT

• _savefpr_m

ATR-CLASSIC-FLOAT && !ATR-SECURE-PLT

• _savefpr_m_g

ATR-CLASSIC-FLOAT

• _restfpr_m

ATR-CLASSIC-FLOAT

• _restfpr_m_x

ATR-CLASSIC-FLOAT

• _restfpr_m_t

• _restgpr_m

• _restgpr_m_x

• _restgpr_m_t

92

Chapter 6. Libraries

ATR-SPE

• _save32gpr_m

ATR-SPE

• _save64gpr_m

ATR-SPE

• _save64gpr_ctr_m

ATR-SPE && !ATR-SECURE-PLT

• _save32gpr_m_g

ATR-SPE && !ATR-SECURE-PLT

• _save64gpr_m_g

ATR-SPE && !ATR-SECURE-PLT

• _save64gpr_ctr_m_g

ATR-SPE

• _rest32gpr_m

ATR-SPE

• _rest64gpr_m

93

Chapter 6. Libraries

ATR-SPE

• _rest64gpr_ctr_m

ATR-SPE

• _rest32gpr_m_x

ATR-SPE

• _rest64gpr_m_x

ATR-SPE

• _rest32gpr_m_t

ATR-SPE

• _rest64gpr_m_t

6.1.3. Types Defined In Standard Header
The type va_list shall be defined as follows:

typedef struct __va_list_tag {
unsigned char gpr;
unsigned char fpr;
/* Two bytes padding. */
char *overflow_arg_area;
char *reg_save_area;

} va_list[1];

The names and types of the elements are not part of the ABI, but the __va_list_tag name is part of
the ABI (since it affects C++ name mangling), and the structure must have the size, alignment and layout
implied by this definition.

94

Chapter 6. Libraries

• The gpr element holds the index of the next general-purpose register saved in this area from which an
argument would be retrieved with va_arg(), where gpr == N corresponds to rN + 3. (If the
argument is passed as DUAL_GP and gpr is odd, the next argument would be retrieved from rN + 4
and rN & plus; 5 instead.) If gpr is greater than 7, no more arguments will be retrieved from
general-purpose registers by va_arg().

ATR-CLASSIC-FLOAT

• The fpr element holds the index of the next floating-point register saved in this area from which an
argument would be retrieved with va_arg().

• Fpr == N corresponds to fN + 1. If fpr is greater than 7, no more arguments will be retrieved from
floating-point registers by va_arg().

• reg_save_area points to an 8-byte-aligned area where registers r3 to r10 are saved, in that order.

Addresses in the area pointed to by reg_save_area that correspond to registers used for passing named
arguments, or to unused registers between those used for passing named arguments, need not
correspond to allocated memory; those registers need not be saved in this area. va_arg shall only
access those words required to load the argument of the type passed.

ATR-SPE

Only the low 32 bits of each register are saved in this area.

ATR-CLASSIC-FLOAT

Registers f1 to f8 immediately follow registers r3 to r10, if CR bit 6 was set when the
variable-argument function was called.

• The overflow_arg_area element points to the word on the stack at the start of the next argument
passed on the stack, or to a prior word that forms part of the padding required for the next argument to
have the required alignment. va_arg shall only access those words required to load the argument of the
type passed; if no arguments were passed on the stack, this area may not be allocated.

The following integer types are defined in headers required to be provided by freestanding
implementations, or have their limits defined in such headers, and shall have the following definitions.

Note: Freestanding implementations need not provide the types sig_atomic_t and wint_t.

• typedef int ptrdiff_t;

• typedef unsigned int size_t;

• typedef long wchar_t;

95

Chapter 6. Libraries

• typedef int sig_atomic_t;

• typedef unsigned int wint_t;

• typedef signed char int8_t;

• typedef short int16_t;

• typedef long int32_t;

• typedef long long int64_t;

• typedef unsigned char uint8_t;

• typedef unsigned short uint16_t;

• typedef unsigned long uint32_t;

• typedef unsigned long long uint64_t;

• typedef signed char int_least8_t;

• typedef short int_least16_t;

• typedef long int_least32_t;

• typedef long long int_least64_t;

• typedef unsigned char uint_least8_t;

• typedef unsigned short uint_least16_t;

• typedef unsigned long uint_least32_t;

• typedef unsigned long long uint_least64_t;

• typedef int int_fast8_t;

• typedef int int_fast16_t;

• typedef int int_fast32_t;

• typedef long long int_fast64_t;

• typedef unsigned int uint_fast8_t;

• typedef unsigned int uint_fast16_t;

• typedef unsigned int uint_fast32_t;

• typedef unsigned long long uint_fast64_t;

• typedef int intptr_t;

• typedef unsigned int uintptr_t;

• typedef long long intmax_t;

• typedef unsigned long long uintmax_t;

96

Appendix A. Taxonomy
The following list describes the archetypal ABI attributes used to conditionally define elements of the
ABI. The relationship of these attributes is described in the taxonomy diagram in Figure A-1. A
combination of these attributes is used to generate the individual Linux and Embedded ABI documents.
These combinations are described in Appendix B. Each attribute description indicates whether it is an
ABI software feature or an attribute that is tied to a specific Power ISA category.

32-bit PowerPC Archetypal ABI Attributes

ATR-BSS-PLT

(ABI Software Feature)

The text under this attribute defines the BSS Procedure Linkage Table ABI, which has a writable
and executable PLT. ATR-BSS-PLT is mutually exclusive with ATR-SECURE-PLT.

ATR-CLASSIC-FLOAT

(Power ISA Category: Floating-Point)

The text under this attribute describes the classic Power Architecture floating-point ABI where there
are 64-bit floating-point registers and an instruction set that accompanies them.
ATR-CLASSIC-FLOAT is mutually exclusive with ATR-SOFT-FLOAT.

ATR-PASS-COMPLEX-IN-GPRS

(ABI Software Feature)

The text under this attribute describes a method for passing complex data types in GPRS.
ATR-PASS-COMPLEX-IN-GPRS is mutually exclusive and incompatible with
ATR-PASS-COMPLEX-AS-STRUCT. ATR-PASS-COMPLEX-IN-GPRS is predicated on
ATR-CLASSIC-FLOAT or ATR-SOFT-FLOAT.

ATR-PASS-COMPLEX-AS-STRUCT

(ABI Software Feature)

The text under this attribute describes a method for passing complex data types as structures.
ATR-PASS-COMPLEX-AS-STRUCT is mutually exclusive and incompatible with
ATR-PASS-COMPLEX-IN-GPRS. ATR-PASS-COMPLEX-IN-GPRS is predicated on
ATR-CLASSIC-FLOAT or ATR-SOFT-FLOAT.

ATR-CXX

(ABI Software Feature)

The text under this attribute describes C++ exception support as it impacts this ABI.

ATR-DFP

(Power ISA Category: Decimal Floating-Point)

The text under this attribute describes the Decimal Floating Point ABI as it relates to decimal
floating-point registers, alignment, parameter passing, etc. This was introduced in Power ISA 2.05.
ATR-DFP is predicated on ATR-CLASSIC-FLOAT or ATR-SOFT-FLOAT.

97

Appendix A. Taxonomy

ATR-EABI

(Power ISA Category: Embedded)

This attribute describes elements that apply to the Embedded ABI as a whole.

ATR-EABI-EXTENDED

(ABI Software Feature)

This attribute describes elements that apply an implementation of the Embedded ABI with extended
conformance such as support for dynamic linking, the GOT, PLT, full relocation support, etc.

ATR-LINUX

(Power ISA Category: Server)

This attribute describes elements that apply to the Linux ABI as a whole.

ATR-LONG-DOUBLE-IBM

(ABI Software Feature)

The text under this attribute describes usage of the AIX 128-bit Long Double format.
ATR-LONG-DOUBLE-IBM is mutually exclusive with ATR-LONG-DOUBLE-IS-DOUBLE.
ATR-LONG-DOUBLE-IBM is predicated on ATR-CLASSIC-FLOAT or ATR-SOFT-FLOAT.

ATR-LONG-DOUBLE-IS-DOUBLE

(ABI Software Feature)

The text under this attribute describes long double ABI when long double is treated as double.
ATR-LONG-DOUBLE-IS-DOUBLE is mutually exclusive with ATR-LONG-DOUBLE-IBM.
ATR-LONG-DOUBLE-IS-DOUBLE is predicated on ATR-CLASSIC-FLOAT or
ATR-SOFT-FLOAT.

ATR-SECURE-PLT

(ABI Software Feature)

The text under this attribute describes the Secure Procedure Linkage Table ABI, which has a
readable and writable, but nonexecutable PLT. ATR-SECURE-PLT is mutually exclusive with
ATR-BSS-PLT.

ATR-SOFT-FLOAT

(ABI Software Feature)

The text under this attribute describes a software emulated 64-bit (double) floating-point ABI which
also describes the conventions for Embedded Floating Point in 64-bit GPRs such as SPE-Float.
ATR-SOFT-FLOAT is mutually exclusive with ATR-CLASSIC-FLOAT.

ATR-SPE

(Power ISA Category: SPE)

The text under this attribute describes the Signal Processing Engine ABI for the SPE facility that
was introduced in Power ISA v2.03 It is a SIMD instruction set using two element short vectors
within 64-bit GPRs. ATR-SPE is mutually exclusive with ATR-VECTOR. ATR-SPE includes
SPE-Float which leverages ATR-SOFT-FLOAT. Therefore ATR-SPE is predicated on
ATR-SOFT-FLOAT and mutually exclusive with ATR-CLASSIC-FLOAT.

98

Appendix A. Taxonomy

ATR-TLS

(ABI Software Feature)

The text under this attribute describes the Thread Local Storage ABI. At the time of this writing
ATR-TLS is mutually exclusive with ATR-EABI since ATR-EABI uses the thread local storage
register for the SDATA2 pointer.

ATR-VECTOR

(Power ISA Category: Vector)

The text under this attribute describes the AltiVec and VMX float and integer SIMD instruction set
ABI. ATR-VECTOR is mutually exclusive with ATR-SPE. ATR-VECTOR is predicated on
ATR-CLASSIC-FLOAT or ATR-SOFT-FLOAT.

ATR-VLE

(Power ISA Category: VLE)

The text under this attribute describes the Variable Length Encoding environment as introduced in
Power ISA 2.03.

The following taxonomy (described in EBNF) describes the relationship between the aforementioned
ABI attributes.

Figure A-1. Taxonomy

ABI -> CommonCore OperatingEnvironment ISA-Flavor

CommonCore -> SYS-V-Without-Float { /* No attribute. Implicit. */ }

OperatingEnvironment -> Linux { atr = ATR-LINUX }
| EABI { atr = ATR-EABI }

ISA-Flavour -> SIMD Encoding Floating-Point

SIMD -> Vector { atr = ATR-VECTOR }
| SPE { atr = ATR-SPE }
| /* Epsilon */ { com = "/* No SIMD. */" }

Encoding -> VLE { atr = ATR-VLE }

Floating-Point -> Common-Float Long-Double FP-Decimal

Common-Float -> Classic-Float-Common { atr = ATR-CLASSIC-FLOAT }
| Soft-Float-Common { atr = ATR-SOFT-FLOAT }

Procedure-Linkage-Table -> BSS-PLT { atr = ATR-BSS-PLT }
| Secure-PLT { atr = ATR-SECURE-PLT }

Thread-Local-Storage -> TLS { atr = ATR-TLS }

Long-Double -> IBM { atr = ATR-LONG-DOUBLE-IBM }
| None { atr = ATR-LONG-DOUBLE-IS-DOUBLE }

FP-Decimal -> /* Epsilon */ { com = "/* No FP-Decimal */" }

99

Appendix A. Taxonomy

| DFP { atr = ATR-DFP }

Complex -> Pass Complex in GPRS { atr = ATR-PASS-COMPLEX-IN-GPRS }
| Pass Complex As Struct { atr = ATR-PASS-COMPLEX-AS-STRUCT }

CXX -> C++ Exception Handling { atr = ATR-CXX }

EABI-Extended -> /* Epsilon */ { com = "/* No EABI Extended */" }
| EABI Extended Conformance { atr = ATR-EABI-EXTENDED }

100

Appendix B. Attribute Inclusion and ABI
Conformance

This appendix describes ABI attribute inclusion and conformance rules. It uses the attribute tags
described in Appendix A.

B.1. ATR-LINUX Inclusion and Conformance

Linux ABI Attribute Inclusions:

• ATR-BSS-PLT

• ATR-CLASSIC-FLOAT

• ATR-CXX

• ATR-DFP

• ATR-LONG-DOUBLE-IBM

• ATR-LONG-DOUBLE-IS-DOUBLE

• ATR-SECURE-PLT

• ATR-SOFT-FLOAT

• ATR-SPE

• ATR-TLS

• ATR-VECTOR

• ATR-PASS-COMPLEX-IN-GPRS

Linux ABI Attribute Exclusions:

• ATR-PASS-COMPLEX-AS-STRUCT

• ATR-VLE

• ATR-EABI-EXTENDED

Linux ABI Conformance

• An implementation of the Linux ABI must implement at least one of the following:
ATR-SOFT-FLOAT ATR-CLASSIC-FLOAT

• If an implementation supports 64-bit vector types on SPE processors or uses the high parts of registers
on such processors it must implement ATR-SPE.

• An implementation of the Linux ABI must implement ATR-LONG-DOUBLE-IBM and may also
implement ATR-LONG-DOUBLE-IS-DOUBLE. A conforming application only uses one or the other.

• An implementation that supports decimal floating point must implement ATR-DFP. Hardware support
for DFP requires implementation of ATR-CLASSIC-FLOAT otherwise ATR-SOFT-FLOAT can
provide software emulation.

• An implementation must implement ATR-SECURE-PLT. ATR-BSS-PLT should be supported for

101

Appendix B. Attribute Inclusion and ABI Conformance

binary compatibility with previous versions of this ABI.

• Availability of Vector data types is subject to conformance to a Power ISA category where the
categories Vector and Signal Processing Engine are mutually exclusive. A conforming application
only uses ATR-VECTOR or ATR-SPE.

Note: An implementation of this ABI shall indicate explicitly which attributes are supported.
Supporting attributes which are mutually exclusive is fine as long as only one is supported at a given
time during application execution.

B.2. ATR-EABI Inclusion and Conformance

EABI Attribute Inclusions

ATR-BSS-PLT

ATR-CLASSIC-FLOAT

ATR-EABI-EXTENDED

ATR-PASS-COMPLEX-AS-STRUCT

ATR-PASS-COMPLEX-IN-GPRS

ATR-LONG-DOUBLE-IS-DOUBLE

ATR-SOFT-FLOAT

ATR-SPE

ATR-VLE

EABI Attribute Exclusions

ATR-CXX

ATR-DFP

ATR-LONG-DOUBLE-IBM

ATR-SECURE-PLT

ATR-TLS

ATR-VECTOR

EABI Conformance

• The EABI does not support thread local storage (ATR-TLS) at this time.

• The EABI does not support ATR-SECURE-PLT at this time.

• The EABI does not support unwind information.

• An implementation of the EABI ABI can implement ATR-PASS-COMPLEX-AS_STRUCT and/or
implement ATR-PASS-COMPLEX-IN-GPRS but a conforming application shall only use one or the
other.

102

Appendix B. Attribute Inclusion and ABI Conformance

• Conformance with the EABI does not require implementation of ATR-EABI-EXTENDED, which
describes implementation of extended conformance such as support for dynamic linking, the GOT,
PLT, full relocation support, etc.

Note: An implementation of this ABI shall indicate explicitly which attributes are supported.
Supporting attributes which are mutually exclusive is fine as long as only one is supported at a given
time during application execution.

103

Appendix C. APUs and Power ISA Categories
This appendix discusses the relationship between Auxiliary Processing Units (APUs) and Power ISA
categories.

APUs are a method used to extend the Power Architecture beyond the facilities described and ratified in
the Power ISA. Since the adoption of the Power ISA many technologies that were historically presented
as APUs have now been subsumed into the Power ISA as optional categories or phased into the base ISA.

Since this ABI is not predicated on minimum Power ISA version it continues to present information on
APUs (see Section 4.10) that have been subsumed into the Power ISA. It is up to the implementation
whether to follow the Power ISA or the APU designation based upon compatibility requirements and to
specify APU information as necessary.

The following table identifies APUs and their relationship to the Power ISA.

Table C-1. APU Extensions and Corresponding Power ISA Categories

APU Extension APU Identifier Power ISA Category Description
Altivec 0x003f V Vector Facility

PMR 0x0041 E.pm E Embedded.Performance Monitor

RFMCI 0x0042 E Embedded, Return From Machine
Check Interrupt instruction

CACHE_LOCK 0x0043 ECL Embedded Cache Locking

SPE 0x0100 SP, SP.FV Signal Processing Engine,
SPE.Embedded Float Vector

E500 SFFP/EFS 0x0101 SP.fs, SP.fd Embedded Float Scalar Single,
Embedded Float Scalar Double

VLE 0x0104 VLE Variable Length Encoding

ISEL 0x0040 Base Power ISA Base (mandatory),
Integer Select instruction

The following APUs remain unspecified by the Power ISA (as of version 2.05).

Table C-2. APUs

APU Extension APU Identifier
e500 BRLOCK 0x0102

104

	Power Architecture® 32bit Application Binary Interface Supplement 1.0 Embedded
	Table of Contents
	List of Figures
	List of Tables
	Preface
	1. How To Read This Document
	2. Section Numbering

	Chapter 1. Introduction
	1.1. Reference Documentation

	Chapter 2. Software Installation
	2.1. Physical Distribution Media and Formats

	Chapter 3. Low Level System Information
	3.1. Machine Interface
	3.1.1. Processor Architecture
	3.1.2. Data Representation
	3.1.2.1. Byte Ordering
	3.1.2.2. Fundamental Types
	3.1.2.3. Aggregates and Unions
	3.1.2.4. Bitfields

	3.2. Function Calling Sequence
	3.2.1. Registers
	3.2.1.1. Register Roles
	3.2.1.2. LimitedAccess Bits

	3.2.2. The Stack Frame
	3.2.2.1. General Stack Frame Requirements
	3.2.2.2. Optional Save Areas
	Register Save Areas
	CR Save Area
	Category Specific SaveRegister Save Area
	CategorySpecific Register Save Areas
	Additional Category Specific Register Save Areas
	Parameter Save Area
	Local Variable Space

	3.2.3. Parameter Passing
	3.2.3.1. Parameter Passing Register Selection Algorithm
	3.2.3.2. Parameter Passing Examples

	3.2.4. Variable Argument Lists
	3.2.5. Return Values

	3.3. Coding Examples
	3.3.1. Code Model Overview
	3.3.3. Function Prologue and Epilogue
	3.3.3.1. The Purpose of a Function's Prologue
	3.3.3.2. The Purpose of a Function's Epilogue
	3.3.3.3. Rules for Prologue and Epilogue Sequences

	3.3.4. Register Saving and Restoring Functions
	3.3.4.1. Details about the Functions

	3.3.5. Profiling
	3.3.6. Data Objects
	3.3.7. Function Calls
	3.3.8. Branching
	3.3.9. Dynamic Stack Space Allocation

	3.4. DWARF Definition

	Chapter 4. Object Files
	4.1. EABI Executable and Linking Format (ELF) Object Files
	4.2. EABI Object File Processing
	4.3. ELF Header
	4.4. Special Sections
	4.5. Special Embedded Sections
	4.6. Symbol Table
	4.6.1. Symbol Values

	4.8. EABI Small Data Areas
	4.8.1. Small Data Area (.sdata and .sbss)
	4.8.2. Small Data Area 2 (.PPC.EMB.sdata2 and .PPC.EMB.sbss2)
	4.8.3. Small Data Area 0 (.PPC.EMB.sdata0 and .PPC.EMB.sbss0)

	4.9. DWARF Additions
	4.10. APU Information Section
	4.11. VLE Identification
	4.12. ROM Copy Segment Information Section
	4.13. Relocation Types
	4.13.1. Relocation Fields
	4.13.2. SPE Specific Relocation Fields
	4.13.3. VLE Specific Relocation Fields
	4.13.4. Relocation Notations
	4.13.5. Relocation Types Table
	4.13.6. Relocation Descriptions

	4.14. EABI Relocations and Linking

	Chapter 5. Program Loading and Dynamic Linking
	5.3. EABI Program Loading and Dynamic Linking

	Chapter 6. Libraries
	6.1. Library Requirements
	6.1.1. C Library Conformance with Generic ABI
	6.1.1.1. Malloc Routine Return Pointer Alignment
	6.1.1.2. Library Handling of Limitedaccess Bits in Registers

	6.1.2. Save and Restore Routines
	6.1.2.1. Save and Restore Routine Suffixes
	6.1.2.2. Save and Restore Routine Templates

	6.1.3. Types Defined In Standard Header

	Appendix A. Taxonomy
	32bit PowerPC Archetypal ABI Attributes

	Appendix B. Attribute Inclusion and ABI Conformance
	B.1. ATRLINUX Inclusion and Conformance
	B.2. ATREABI Inclusion and Conformance

	Appendix C. APUs and Power ISA Categories

