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1 Introduction

Problem 3 (by Paul Jefferys) is:

3. Adrian has drawn a circle in the xy-plane whose radius is a
positive integer at most 2008. The origin lies somewhere inside
the circle. You are allowed to ask him questions of the form “Is
the point (x, y) inside your circle?” After each question he will
answer truthfully “yes” or “no”. Show that it is always possible
to deduce the radius of the circle after at most sixty questions.
[Note: Any point which lies exactly on the circle may be considered
to lie inside the circle.]

This problem generalises naturally to other dimensions; the following
generalisation is considered here:

Positive integers d and n are given. Adrian has chosen a positive
integer r ≤ n and a closed ball B of radius r in d-dimensional
Euclidean space, containing the origin. You are allowed to ask
him questions of the form “Is the point x in B?” After each
question he will answer truthfully “yes” or “no”. Let Q(d, n) be
the least integer such that it is always possible to deduce r after
at most Q(d, n) questions. Determine Q(d, n).

The original problem then asks for a proof that Q(2, 2008) ≤ 60. We will
determine the asymptotic behaviour of Q(d, n), showing that

|Q(d, n) − ((d + 3)/2) log2 n|

is bounded by a function of d.
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2 Upper bounds

Taking e1, e2, . . . , ed as a standard basis of mutually orthogonal unit vectors
for R

d, we write the general point in R
d as x = (x1, x2, . . . , xd) =

∑d
i=1 xiei.

We often need to refer to the intersections of the surface of the ball B with the
coordinate axes: we write x+

i for the greatest value of xi such that xiei ∈ B,
and x−

i for the least such xi; we write xc
i for the coordinates of the centre

of B. When in the xy-plane, we similarly use notation such as x+.
We make repeated use of the following lemma in a series of planes to

bound the values xc
i , x+

i and x−
i , together with questions forming a binary

search along coordinate axes in order to bound values x+
i and x−

i sufficiently
well for the required applications of this lemma.

Lemma 2.1 Let real numbers xmax ≥ ux > 0 and ymax ≥ uy > 0 be given.
Consider the closed balls B in R

2 such that −xmax ≤ x− ≤ −xmax + ux,
xmax − ux ≤ x+ ≤ xmax and ymax − uy ≤ y+ ≤ ymax, and such that at least
one of the following holds: either ymax − uy ≥ xmax, or (0,−xmax) 6∈ B. All
such balls have −ux/2 ≤ xc ≤ ux/2, and there exist y1, y2 with y1 ≤ y2 ≤
y1 + uy + 3ux such that all such balls have y1 ≤ y− ≤ y2.

Proof Clearly xc = (x− +x+)/2, from which the bounds on xc are obvious;
it remains to prove the bounds on y−.

First consider the case where ymax − uy ≥ xmax (so y+ ≥ x+ > 0 for all
balls B satisfying the given conditions). By the symmetry of the conditions
of the lemma, the set of possible values of y− is the same for balls with xc ≥ 0
as it is for balls with xc ≤ 0, so suppose without loss of generality that xc ≥ 0.

Now the centre of B is the intersection of the line x = xc with the perpen-
dicular bisector of the line between (x+, 0) and (0, y+); this is (xc, (x+/y+)xc+
y+/2− (x+)2/2y+). Since y− = 2yc − y+, we deduce that y− = 2(x+/y+)xc −
(x+)2/y+.

We need to prove that max y− − min y− ≤ uy + 3ux. We have

max y− − min y− ≤ max 2(x+/y+)xc − min 2(x+/y+)xc

+ max(x+)2/y+ − min(x+)2/y+

≤ ux +
x2

max

ymax − uy
− (xmax − ux)

2

ymax

= ux + x2
max

(

1

ymax − uy
− 1

ymax

)

+
x2

max − (xmax − ux)
2

ymax

= ux +
x2

maxuy

ymax(ymax − uy)
+

2xmaxux − u2
x

ymax

≤ uy + 3ux
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so the result is proved in the first case.
Now consider the case where ymax−uy < xmax, so (0,−xmax) 6∈ B (whence

y− > −xmax). Because |xc| ≤ ux/2, we have y+ − y− > 2r − ux, so y− <
y+ + ux − 2r. Now we have y+ ≤ ymax < uy + xmax, and r ≥ xmax − ux, so
y− < uy +xmax +ux −2(xmax −ux) = uy +3ux −xmax, so the result is proved
in the second case as well. �

Theorem 2.2 For all positive integers d and n, we have

Q(d, n) ≤ ((d + 3)/2) log2 n + (d/2)(log2 d) + 7d + 3.

Proof If d = 1, within 4 + 2⌊log2 n⌋ questions we may determine both x−

and x+ to within ranges of 2n/21+⌊log
2
2n⌋ < 1, and so determine the integer

value of r, so suppose now that d ≥ 2. We may also clearly suppose that
n > 1.

We define s = max{r, 2} and u = 2
√

s − 1/4/
√

d − 1. For a succession
of appropriately translated coordinate systems (such that the origin of the
translated coordinates is still known to be in B), we will determine x−

i and x+
i

to within intervals of length at most u, for 1 ≤ i ≤ d−1; in those coordinates,
we will have −u/2 ≤ xc

i ≤ u/2, for 1 ≤ i ≤ d − 1. (After we translate the
xi+1-coordinates, the bounds on x+

i and x−
i will no longer apply in the new

coordinate system, but the bounds on xc
i will still apply.) Thus the location of

the centre of B projected orthogonally onto the subspace generated by e1, e2,
. . . , ed−1 will have been determined to be within a distance of

√

s − 1/4 from
the origin. From this, it follows that if r > 1 then 0 ≤ r−(x+

d −x−
d )/2 ≤ 1/2,

since (r − 1/2)2 + (r − 1/4) = r2. Thus it will suffice to determine each of
x+

d and x−
d to within an interval of length less than 1/2: we will then have

found a lower bound on (x+
d − x−

d )/2 that is greater than r − 1 (or possibly
equal to r − 1 if r = 1) and less than or equal to r.

We determine x+
i (for 1 ≤ i ≤ d − 1) and x−

1 to within intervals of
length at most u by a binary search among intervals whose length increases
with distance from the origin. Let a0 = 0 and, for i ≥ 1, define ai =
ai−1 + 2

√

7/4/
√

d − 1 if ai−1 < 4 and ai = ai−1 + 2
√

⌈ai−1/2⌉ − 1/4/
√

d − 1
if ai−1 ≥ 4. If x+

i ≥ aj then r ≥ ⌈aj/2⌉, so confining x+
i to one of these

intervals does suffice to confine it to an interval of length at most u.
If ak > 2n, we can confine x+

i to one of the intervals within ⌈log2 k⌉ ques-
tions, and we wish to bound k. If ai = 2b2+1/4 ≥ 4 (so b ≥

√

15/8 ), we have
2(b + 1)2 − 2b2 = 4b + 2 < 6b, so aj > 2(b + 1)2 + 1/4 for j ≥ i +

⌈

3
√

d − 1
⌉

.

Since also aj > 4 for j =
⌈

3
√

d − 1
⌉

, we conclude that k ≤
⌈

3
√

d − 1
⌉

⌈√n ⌉.
So at most

(

1 + log2 3
√

d − 1
)

+ (1 + log2

√
n ) ≤ 4 + (1/2)(log2 d + log2 n)

questions are needed to find x+
i to within an interval of length at most u.
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The algorithm now proceeds as follows. First we determine bounds on
x+

1 and x−
1 by the above method. One of the intervals found may be smaller

than the other; if so, we extend the smaller interval away from the origin to
the length of the longer interval, so we have a symmetric configuration again,
and call the longer interval length u1. We then translate the x1-coordinates
so that maxx+

1 + min x−
1 = 0, and we know that the origin is still inside B

in the translated coordinates.
Now, for 1 ≤ i ≤ d − 2, we suppose inductively that the origin is still

inside B in the current coordinates and that we know that −max x+
i ≤

x−
i ≤ −(max x+

i ) + ui ≤ 0 ≤ max x+
i − ui ≤ x+

i ≤ max x+
i . Ask whether

(max x+
i )ei+1 is in B; if not, negate the xi+1-coordinates. We now apply a

binary search, as above, to determine x+
i+1 to within an interval of length at

most u (with lower bound at least 0, and at least maxx+
i if the answer to the

previous question was “yes”). Applying Lemma 2.1, we also know x−
i+1 to

within an interval of length at most 4u (upper bound at most 0), so with two
more questions we know x−

i+1 to within an interval of length at most u. Let
the larger length of the two intervals be ui+1, and extend the shorter interval
away from the origin and translate the origin as was done for x1 above.

Now we have bounded xc
i to within the required intervals, for 1 ≤ i ≤ d−1.

This has been done within d(4 + (1/2)(log2 d + log2 n)) questions for the
binary searches along the axes, d − 2 questions to decide whether to negate
coordinates, and 2(d− 2) questions to reduce the intervals for x−

i+1 values, a
total of 7d−6+(d/2)(log2 d+log2 n) questions. It remains to bound x+

d and
x−

d to within intervals of length less than 1/2.
To do so, we ask whether (maxx+

d−1)ed is in B; if not, negate the xd-
coordinates. Then do a binary search for x+

d , this time to within an interval
of length less than 1/2 rather than at most u. Then by Lemma 2.1 we know
x−

d to within an interval of length at most (1/2) + 3u, and apply a binary
search to reduce this to an interval of length less than 1/2. The number of
questions involved in these final steps is at most 1 for the decision on negating
coordinates, 3+ log2 n to find the interval for x+

d , and 5+ (1/2) log2 n to find
the interval for x−

d , a total of 9 + (3/2) log2 n, giving the total number of
questions for the whole algorithm as specified above. �

To achieve a slight improvement on the bound for the original prob-
lem, note that in the above the choice of taking 1/2 of the possible error
in the estimate for r from the first d − 1 coordinates, and 1/2 from the
last coordinate, was arbitrary. In this particular case, it proves better to
take u = 2

√

s/2 − 1/16, so error of 1/4 comes from the first coordinate
and up to 3/4 from the second. With this choice, a127 > 4016; seven ques-
tions are made to approximate each of x+

1 and x−
1 , one to decide whether to
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negate x2, twelve to approximate x+
2 and nine to approximate x−

2 , so yielding
Q(2, 2008) ≤ 36.

3 Lower bounds

Suppose that, after some number of questions, the radius r can be deduced
from the answers. In addition to determining the radius, the answers will
have determined a set of possible positions for the centre of the ball B; this
set will be a measurable subset of the closed ball of radius r centred at the
origin.

Suppose the answers are consistent with some nonempty set S of closed
balls as possibilities for B. Then they are also consistent with any closed
ball B′ of positive integer radius less than or equal to n that is contained
in the union of the balls in S and contains the intersection of those balls
(any “yes” answers must have related to points in the intersection, and any
“no” answers must have related to points outside the union; the origin must
be contained in the intersection). Thus all closed balls of positive integer
radius less than or equal to n, contained in the union of the balls in S and
containing the intersection of the balls in S, must have radius equal to r.
We will show that this leads to upper bounds on the volume of the set of
possible positions for the centre of B, and so to lower bounds on the number
of questions required.

Lemma 3.1 Suppose d ≥ 2. If the answers to the questions have determined
the radius to be r, then the diameter of the set of possible positions for the
centre of B is at most 2

√
2r − 1. (The diameter of a nonempty set of points

is the supremum of distances between pairs of points in the set.)

Proof The result is trivial for r = 1, so suppose r > 1. First note that any
two balls consistent with the answers to the questions must intersect, if only
at the origin. Suppose there are two whose centres are distance 2s apart,
where

√
2r − 1 ≤ s ≤ r. The surfaces of these balls intersect in a sphere of

radius
√

r2 − s2 ≤ r − 1 (in a (d − 1)-dimensional subspace), and it is easy
to see there is a closed ball of radius r − 1 (in fact two such balls, unless
s =

√
2r − 1 ) whose surface contains that sphere, and which contains the

intersection of the two balls and is contained in their union. �

Lemma 3.2 Suppose a convex set S in d ≥ 2 dimensions has volume V and
diameter R. Then it contains an open ball of radius at least V/2Rd−1.
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Proof This proof is based on that in [1] for a similar result for a set of
circumradius R. (In high dimensions, a ball of radius R has lower volume
than the cube of side R used in this proof to contain a set of diameter R,
and so that result would give slightly better bounds.)

Let r be the largest radius of an open ball centred at the centre of mass
of S and contained in S. This ball must touch the boundary of S at some
point P , and because S is convex there is a (d−1)-dimensional plane passing
through any point on the boundary of S, such that all of S not lying in that
plane lies on the same side of it. Without loss of generality, let P be the
origin, let the plane be x1 = 0 and let S all lie in x1 ≥ 0; then the centre of
the ball is re1, and this is the centre of mass of S. Because the diameter of S
is R, we may also without loss of generality suppose S to lie in 0 ≤ xi ≤ R
for all 1 ≤ i ≤ d.

If r < V/2Rd−1, we have V > 2rRd−1, so some part of S of positive
measure lies in x1 > 2r. Let the volume of the part that lies in x1 ≤ 2r
be V0, and move some measurable subset of the part lying in x1 > 2r, of
volume 2rRd−1 − V0, into x1 ≤ 2r, possibly losing convexity in the process
(but keeping the bounds on all the coordinates). Since a positive volume has
moved to lower x1-coordinates, the centre of mass of the resulting set has
x1-coordinate less than r, but since the new set contains all of 0 ≤ x1 ≤ 2r,
0 ≤ xi ≤ R for 2 ≤ i ≤ d (possibly minus some set of measure zero),
plus some positive volume with x1 > 2r, the centre of mass has x1 > r, a
contradiction. Thus r ≥ V/2Rd−1. �

Lemma 3.3 Suppose d ≥ 2, and suppose an integer r ≥ 12 is given. Let
S be a nonempty set of points in d-dimensional space with diameter at most
2
√

2r − 1. Suppose there exists a point p (not necessarily in S) such that, for
every unit vector v, there is a point x in S with (x−p) ·v ≥ 2+12/r. Then
the closed ball B of radius r − 2 centred at p contains the intersection of the
closed balls of radius r whose centres are the points of S, and is contained in
the union of those balls.

Proof Without loss of generality let p be the origin. The conditions then
clearly imply that the origin lies inside the convex hull of S, which in turn
implies that ‖x‖ ≤ 2

√
2r − 1 for all x in S.

To see that B contains the intersection of the given balls, write a general
point outside of B as sv, where s > r − 2 and v is a unit vector. There is
some point x in S with x · −v ≥ 2 + 12/r, and the point sv must lie outside
the ball with radius r centred at x.
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To see that B is contained in the union of the given balls, write a general
point of B as sv, where 0 ≤ s ≤ r − 2 and v is a unit vector. If s ≤ r −
2
√

2r − 1, then it is contained in all the balls, so suppose r−2
√

2r − 1 < s ≤
r−2. Now consider the ball centred at the point x of S with x ·v ≥ 2+12/r.
Write x = av + bw, with w being a unit vector orthogonal to v and b ≥ 0;
we have 2 + 12/r ≤ a ≤ 2

√
2r − 1 and 0 ≤ b ≤ 2

√
2r − 1. If a −

√
r2 − b2 ≤

s ≤ a +
√

r2 − b2 then sv will be in the ball under consideration. We have√
r2 − b2 ≥

√
r2 − 8r + 4, so it will suffice if 2

√
2r − 1 −

√
r2 − 8r + 4 ≤

r − 2
√

2r − 1 and r − 2 ≤ 2 + 12/r +
√

r2 − 8r + 4; both of these hold for
r ≥ 12. �

Theorem 3.4 For all positive integers d and n, we have

Q(d, n) ≥ ((d + 3)/2) log2 n − ((d + 2)/2) log2 d − (d + 11)/2.

Proof If d = 1, then consider the set of centres determined by questions
that have determined the radius to be r > 1. This set has diameter at
most 2, otherwise it would be consistent with a ball of radius r − 1. Thus
the questions must distinguish at least n(n + 1)/2 possibilities, requiring at
least 2 log2 n − 1 questions.

Now suppose d > 1. The set of possible positions for a centre of a closed
ball of radius r is a closed ball of radius r centred at the origin, and a trivial
lower bound for the volume of this ball is that of a cube of side 2r/

√
d,

inscribed in this ball; that is, (2r)dd−d/2.
Consider a subset of this set that is the set of possible positions for the

centre once the radius has been determined to be r after some number of
questions, and suppose r ≥ 12. By Lemma 3.1 this subset (and so its convex
hull) has diameter at most 2

√
2r − 1. Suppose this subset has volume V . Its

convex hull then contains an open ball of radius at least V/2
(

2
√

2r − 1
)d−1

,
by Lemma 3.2. If this radius is greater than 2 + 12/r, then the convex hull
satisfies the conditions of Lemma 3.3; but the existence of x in the convex
hull with (x−p) ·v ≥ 2+12/r implies the existence of such x in the original
set, so the original set satisfies the conditions of Lemma 3.3 and the set is
consistent with a ball of radius r − 1, a contradiction.

Thus our subset has volume at most

2(2 + 12/r)
(

2
√

2r − 1
)d−1

< 8
(

2
√

2r − 1
)d−1

,

so the questions must distinguish at least

(2r)dd−d/2/8
(

2
√

2r − 1
)d−1 ≥ 2−(d+3)/2r(d+1)/2d−d/2
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possibilities for balls of radius r, if r ≥ 12. So if n ≥ 12 then the total
number of possibilities is at least

2−(d+3)/2d−d/2

∫ n

11

r(d+1)/2dr,

that is,
2−(d+3)/2d−d/2(2/(d + 3))

(

n(d+3)/2 − 11(d+3)/2
)

.

Now, (11/12)5/2 < 7/8, and d + 3 < 4d, so there are at least

2−(d+11)/2d−(d+2)/2n(d+3)/2

possibilities. Distinguishing them will require at least

((d + 3)/2) log2 n − ((d + 2)/2) log2 d − (d + 11)/2

questions. Finally, if n < 12 the given bound is less than 1, and is negative
if n = 1, so the result holds for n < 12 as well. �

Applying this to the original problem, the closed ball of radius r has
area πr2, and the subsets have area at most 4(2 + 12/r)

√
2r − 1 < 8(1 +

6/r)
√

2r, so at least

π

8
√

2

∫ 2008

11

r3/2

1 + 6/r
dr >

π

8
√

2

∫ 2008

60

r3/2

1.1
dr > 224

possibilities must be distinguished. Thus Q(2, 2008) ≥ 25.

4 Further refinements

Above, Q(d, n) was found to be ((d + 3)/2) log2 n to within (d/2)(log2 d) +
O(d). The following outline arguments suggest that the (d/2)(log2 d) terms
can be eliminated, leaving an uncertainty O(d), which would be harder to
eliminate.

In high dimensions, a cube inscribed in a sphere gives a much better ap-
proximation to that sphere’s volume than a cube circumscribing that sphere.
The (d/2)(log2 d) terms arise from approximations by inscribed cubes (which
present little opportunity for further improvements), and can be eliminated
by avoiding approximations of other spheres by circumscribing cubes. In the
lower bound, use of a sphere rather than a cube in Lemma 3.2 (i.e., using
the lemma from [1] directly) would yield the required improvement; further
slight improvements in the O(d) term would be obtained by using any better
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bounds available on the volume of a body with given diameter. In the upper
bound, searching each dimension in turn to locate the centre means the cen-
tre is effectively being located within a cube rather than a sphere; the search
in each dimension should be adjusted so that it uses slightly more questions
when finding a bigger lower bound on the radius (where subsequent dimen-
sions will be more constrained) than when finding a smaller lower bound on
the radius. It may be shown that if s successive binary searches are to be
used to locate something in s dimensions from N possibilities (by determin-
ing its value on each axis in turn through a series of questions dividing the
range of possible values on that axis at some point on that axis), this can
be done in less than 2s − 1 + log2 N questions, so the binary search in each
dimension can indeed be arranged to take account of the number of possibili-
ties remaining for subsequent searches after each possible result of the search
in that dimension, with O(d) overhead.

The remaining O(d) difference between upper and lower bounds would
then reflect factors including issues with logarithms not being integers and
associated overheads in binary search, and differences in volume between the
largest (d−1)-dimensional set with given diameter (used in the lower bound)
and the cube with the same diameter (used in the upper bound).
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