C6 with general initial configuration

Joseph Myers (UNK9)

In the mark scheme discussion for problem 3 (C6) it was indicated that reductions from 'useful' initial configurations (not restricted to the precise one in the official solution) would be worth a mark but those from 'random' initial configurations wouldn't. This solution illustrates that arbitrary initial configurations (without any reference to a particular maximum clique) are in fact useful and so may also need to be credited for consistency of marking of partial solutions between the different approaches.

Let G be the graph of all competitors, and let $c(H)$ be the largest size of a clique in H (for H a subgraph or subset of vertices of G); let $c(G)=2 m$. Suppose that G is a counterexample to the problem, i.e., that its vertices cannot be divided into two parts with equal largest clique size.

Starting from an arbitrary division of the vertices of G into G_{1} and G_{2}, move vertices from the part with the greater largest size of a clique into the other part (as in the official solution) until the sizes differ by 1 , say wlog $c\left(G_{1}\right)=r$ and $c\left(G_{2}\right)=r+1$; as in the official solution, $r \geq m$. We may suppose r maximum such that there exists such a division; then there do not exist two vertex-disjoint cliques of size $r+1$.

Lemma: G_{2} contains a unique clique of size $r+1$.
Proof: Suppose otherwise; let U be the smallest union of the sets of vertices of two K_{r+1} in G_{2}. Move vertices contained in a K_{r+1} in G_{2} but not in U into G_{1} one-by-one; since we have a counterexample, this preserves $c\left(G_{1}\right)$ and $c\left(G_{2}\right)$. Now let H_{1}, H_{2} be two distinct K_{r+1} with vertices in U, and let $a \in H_{1} \backslash H_{2}$, $b \in H_{2} \backslash H_{1}$ be two vertices in U; then any K_{r+1} in G_{2} contains at least one of a and b (by minimality of U). $\quad c\left(G_{2}-a\right)=c\left(G_{2}-b\right)=r+1$ so $c\left(G_{1}+a\right)=c\left(G_{1}+b\right)=r$, but $c\left(G_{2}-a-b\right)=r$ so $c\left(G_{1}+a+b\right)=r+1$, and any K_{r+1} in $G_{1}+a+b$ must contain both a and b, so $a b$ is an edge. Since a and b were arbitrary vertices in $H_{1} \backslash H_{2}$ and $H_{2} \backslash H_{1}$, the vertices of U form a clique, which has size greater than $r+1$, a contradiction.

Proof of C6: Now G_{2} contains a unique clique of size $r+1$. Moving any vertex a_{i} of that clique to G_{1} yields a unique clique $H_{i}+a_{i}$ of size $r+1$ in $G_{1}+a_{i}$, and not all H_{i} are the same K_{r} subgraph (else we have a clique of size $2 r+1$ in G), so say $H_{1} \neq H_{2}, b_{1} \in H_{1} \backslash H_{2}$ and $b_{2} \in H_{2} \backslash H_{1}$. Then $G_{2}-a_{1}+b_{1}$ and $G_{2}-a_{2}+b_{2}$ contain cliques of size $r+1$ (containing b_{1} and b_{2} respectively). The clique in $G_{2}-a_{1}+b_{1}$ must contain a_{2}, since otherwise it would be disjoint from $H_{2}+a_{2}$, so $b_{1} a_{2}$ is an edge. Since b_{1} was an arbitrary vertex of $H_{1} \backslash H_{2}, a_{2}$ has edges to all vertices of H_{1}, so $G_{1}+a_{2}$ has more than one clique of size $r+1$, contradicting the lemma.
(The Lemma may also be applied to the result of Step 2 of the official solution, where G_{1} is a clique of size r that must then have all its vertices joined to all the vertices of the unique K_{r+1} in G_{2}.)

