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Introduction

Problem 6 is:

6. Let T be a set of 2005 coplanar points with no three collinear.
Show that, for any of the 2005 points, the number of triangles it
lies strictly within, whose vertices are points in T , is even.

This result is true for any odd integer replacing 2005. For all six solutions
presented here, all points are always presumed coplanar, and it is natural to
distinguish the point P for which the number of containing triangles is being
counted from the other 2004 points of T . That is, all solutions prove the
following result:

For any nonnegative even integer n, and any set S of n points, no
three collinear, and any point P 6∈ S not collinear with any two
points of S, the number of triangles containing P whose vertices
are points of S is even.

I found the given solutions in the order 4, 5, 6, 3, 2; solution 1 was pro-

vided by Richard Atkins and Gerry Leversha and is the “standard” approach

to this problem. Solution 7 is from Paul Russell; solution 8 is from Georg

Schoenherr; solution 10 is from my mother; solutions 9 and 11 are loosely

based on ideas from contestant scripts and in turn solution 12 is loosely based

on solution 9. I have also adjusted the typography of the problem, changing

T to T .
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Solution 1: Sliding a point

Consider starting a point X somewhere outside the convex hull of S and
moving it to the desired position of P along some continuous path. Without
loss of generality we may choose X and the path such that it is a straight line
that does not pass through any of the points of S or the intersection of any
two lines between points of S. Keep track of the number of triangles con-
taining X at all points along this path. Initially it is 0; it only changes when
it crosses the straight line segment between two points of S, say A and B.
If there are c points of S on the same side of the line AB as X starts, and
d points on the other side (so c + d = n − 2), then X leaves c triangles and
enters d triangles when it crosses the line. Since c + d is even, so is d − c,
so the number of triangles containing X remains even at all points along its
path.

The choice of a straight line for the path is to avoid it crossing lines

infinitely many times. At BMO level I do not think it is to be expected for

students to state that their paths must cross lines only finitely many times

or to give any reason why such a path must exist. I also avoid intersection

points for simplicity, although things can also be properly defined when an

intersection point is crossed and students may well omit to consider the issue.

The solution can also be phrased in terms of keeping P fixed and moving the

points of S, and Geoff Smith points out that you can also move both P and

all the points of S.
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Solution 2: Direct counting

For any set A of three points, not collinear, and any point P not collinear
with any two points of A, define I∆

A (P ) to be 1 if P is contained within the
triangle whose vertices are the elements of A and 0 otherwise. For any set B
of points, no three collinear, and any point P 6∈ B not collinear with any two
points of B, define IB(P ) to be the number of triangles containing P whose
vertices are points of B, so IA(P ) = I∆

A (P ) for a set of three points and in
general

IB(P ) =
∑

A⊆B, |A|=3

I∆
A (P ).

Note that IB(P ) is even if |B| = 4, by considering the two possible config-
urations for four points (either the convex hull is a quadrilateral, or it is a
triangle; see illustrations under solution 6 below).

We wish to show that IS(P ) is even. Observe that

∑

B⊆S, |B|=4

IB(P )

is even, because each individual term of the sum is even. But

∑

B⊆S, |B|=4

IB(P ) =
∑

B⊆S, |B|=4

∑

A⊆B, |A|=3

I∆
A (P )

= (n − 3)
∑

A⊆S, |A|=3

I∆
A (P )

= (n − 3)IS(P )

since each 3-set is a subset of (n − 3) 4-sets. Since n − 3 is odd, IS(P ) is
even.

Gerry Leversha shows how this solutions can be written in words without

use of indicator functions, which is probably how BMO candidates are more

likely to write it.
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Solution 3: Rotating a line with binary se-

quences

Draw a straight line through P , not passing through any point of S. Label
one half-line starting at P as 1 and the other as 0. Rotate this line clockwise
around P , writing down 1 when the 1-half-line passes through a point of S
and 0 when the 0-half-line does so. When the line has been rotated by 180◦,
n digits will have been written down, one for each point of S; after this each
digit is different from that n before it, so the sequence repeats with period 2n.

P is not contained in the triangle whose vertices are three given points
of S if and only if those points all lie on one side of some line through P ;
that is, if the subsequence of digits corresponding to those points has pat-
tern . . . 111000111000 . . . ; so it is contained in that triangle if and only if the
pattern is . . . 101010101010 . . . . Thus, the number of triangles containing P
is equal to the number of 010 and 101 subsequences of (not necessarily con-
secutive) digits from any n consecutive digits in the sequence written down
by the above procedure.

We claim that the number of such subsequences is always even, and prove
this by induction on the even integer n. It is true for n = 0 and n = 2, so
suppose n ≥ 4 and that the number of such subsequences of any sequence
of m 0s and 1s is even for any even m < n. Describe a sequence of a1 1s,
a2 0s, a3 1s, . . . as (a1, a2, a3, . . .), where the ai are nonnegative integers, and
say this description is in canonical form if no ai is zero except possibly a1.
Let S(a1, a2, a3, . . .) denote the number of 010 and 101 subsequences in this
sequence; then

S(a1, a2, a3, . . .) =
∑

i<j<k, j−i,k−j odd

aiajak

independent of whether the description is canonical. But if ai ≡ bi (mod 2)
for all i then this formula implies that

S(a1, a2, a3, . . .) ≡ S(b1, b2, b3, . . .) (mod 2)

so if any ai ≥ 2 then the result is true by the induction hypothesis.
Thus it only remains to consider the case where the canonical description

has all ai zero or one; that is a sequence of form 101010 . . . (without loss
of generality). Let n = 2k. The number of 010 and 101 subsequences not
using either of the initial two digits is even by the induction hypothesis. The
number using both those digits is k − 1. The number using just one of those
digits is the number of pairs in the remaining n− 2 digits consisting of one 0
and one 1, that is (k − 1)2. Now (k − 1)2 + (k − 1) = k(k − 1) is even, so the
result follows by induction.

Noncanonical descriptions are allowed because the reduction mod 2 can

convert a canonical description to a smaller noncanonical one, so it is im-

portant that the formulas are still valid for noncanonical descriptions.
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Solution 4: Two-point induction using a close

line segment

We work by induction on n. The result is clearly true for n = 0 and n = 2,
so suppose that the result holds for all even n < k for some even k ≥ 4 and
consider the case n = k.

We may clearly presume that P lies within the convex hull of S (otherwise
it lies in no triangles). The straight line segments between points of S divide
the convex hull into convex regions; suppose that one of the edges of the
region containing P is from the line segment AB for some points A, B ∈ S.
By the induction hypothesis, the number of triangles containing P whose
vertices are from S \ {A,B} is even, so it remains to show only that the
number of triangles containing P which have at least one of A and B as a
vertex is also even. The (infinite) line AB divides the points of S \ {A,B}
into those on the same side as P , say p of them, and those on the other side,
n − 2 − p of them. P is in all triangles ABX where X is on the same side
as P (since all such triangles contain the convex region containing P ), and in
no such triangles where X is on the other side. If X and Y are on the same
side, P does not lie in AXY or BXY . If X and Y are on different sides, say
X on the same side as P and Y on the other side, then since P lies in ABX
it lies in the convex hull of ABXY , and so lies in exactly one of AXY and
BXY by considering three cases (shown in Figure 1): the convex hull can be
a quadrilateral (AXY and BXY disjoint and covering that quadrilateral), a
triangle with B inside (AXY containing ABX which contains P and BXY
being disjoint from ABX), or a triangle with A inside (BXY containing
ABX which contains P and AXY being disjoint from ABX). Thus P lies
in exactly p + p(n − 2 − p) = p(n − 2) − p(p − 1) triangles with at least one
of A and B as a vertex, (n − 2) is even and so is one of p and (p − 1).

This solution can also be expressed in terms of AB being the closest line

segment to P , and I originally found it in that form. However, the notion

of distance does not appear in the original problem: it involves only notions

of ordered geometry, as do the other five solutions. Thus expressing the

solution without involving distance, as above, seems preferable.
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Figure 1: Cases for solution 4
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Solution 5: Four-point induction

We work by induction on even integers n. We use the following induction
hypothesis which is slightly stronger than the statement of the problem: for
any set S of n points, no three collinear, and any point P 6∈ S not collinear
with any two points of S, the number of triangles containing P whose vertices
are points of S is even, and for any two points A, B ∈ S the number of
triangles containing P whose vertices are points of S and which have at least
one of A and B as a vertex is even. This hypothesis is clearly true for n = 0
and n = 2, so suppose that the hypothesis holds for all even n < k for some
even k ≥ 4 and consider the case n = k.

Choose any A, B ∈ S. The number of triangles containing P whose
vertices are points of S \ {A,B} is even by the induction hypothesis, so it
only remains to consider triangles with A or B as a vertex. Choose some
other C, D ∈ S; by the induction hypothesis applied to S \ {C,D}, the
number of triangles containing P with at least one of A or B as a vertex
but without C or D as a vertex is also even, So it now only remains to show
that the number of triangles containing P , with at least one of A and B as
a vertex, and with at least one of C and D as a vertex, is even.

First consider triangles all of whose vertices are from {A,B,C,D}. If P
is outside the convex hull of ABCD then it is in no such triangles, otherwise
it is in two such triangles; the three essentially different cases are shown in
Figure 2. (Note that there is symmetry between A and B; between C and D;
and between the pair AB and the pair CD.)

Now consider triangles with some vertex X not from {A,B,C,D}. For
each X ∈ S \ {A,B,C,D} we must count how many of the triangles ACX,
ADX, BCX, BDX contain P . We shall show that (depending on the posi-
tions of P , A, B, C, D) this number is either even for all X or odd for all X;
there being n − 4 such X ∈ S \ {A,B,C,D}, the result will then follow. If
we draw the lines PA and PC, we see that P lies in XAC if and only if X
is in the sector of the plane bounded by the half-lines from P away from A
and C. Thus we need to consider configurations of half-lines from P away
from A, B, C, D (where the only property of configurations to consider is
on which side of each pair of half-lines the angle is less than 180◦). The six
cases are shown in Figure 3; the lines away from A, B, C, D are marked A′,
B′, C ′, D′ and each sector is marked with the number of the triangles ACX,
ADX, BCX, BDX containing P if X is in that sector.
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Figure 2: Cases for solution 5: triangles from {A,B,C,D}
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Figure 3: Cases for solution 5: plane sectors
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Solution 6: Six-point induction

I do not recommend this solution, but it is the logical conclusion of applying

the induction of the previous solution and not stopping at four points. As

noted at the end, the analysis of cases could be avoided and replaced by one

from the previous solution, but then it would just be a more convoluted version

of that solution.

We work by induction on even integers n. We use the following induction
hypothesis which is slightly stronger than the statement of the problem:
for any set S of n points, no three collinear, and any point P 6∈ S not
collinear with any two points of S, the number of triangles containing P
whose vertices are points of S is even, and for any two points A, B ∈ S the
number of triangles containing P whose vertices are points of S and which
have at least one of A and B as a vertex is even, and for any four points A,
B, C, D ∈ S the number of triangles containing P whose vertices are points
of S and which have at least one of A and B as a vertex and which have at
least one of C and D as a vertex is even. This hypothesis is clearly true for
n = 0 and n = 2, and holds for n = 4 by considering the cases of Figure 2
above, so suppose that the hypothesis holds for all even n < k for some even
k ≥ 6 and consider the case n = k.

Choose any A, B, C, D ∈ S. The number of triangles containing P
whose vertices are points of S \ {A,B} is even by the induction hypothesis,
as is the number whose vertices are points of S \ {C,D} but which have at
least one of A and B as a vertex, so it only remains to consider triangles
with A or B as a vertex and with C or D as a vertex. Choose some other
E, F ∈ S; by the induction hypothesis applied to S \ {E,F}, the number of
triangles containing P with at least one of A or B as a vertex and with at
least one of C or D as a vertex but without E or F as a vertex is also even.
So it now only remains to show that the number of triangles containing P ,
with at least one of A and B as a vertex, and with at least one of C and D
as a vertex, and with at least one of E or F as a vertex, is even. But such
triangles must have all their vertices from {A,B,C,D,E, F}, so we need only
consider the possible configurations of six points and show that each region in
each such configuration is contained in an even number of the eight triangles
meeting the given conditions. Without loss of generality, we do not need to
consider configurations where three lines between disjoint pairs of vertices
are concurrent; slightly perturbing the vertices of such a configuration will
yield one where all the regions of the previous configuration remain, in the
same number of triangles as before, but a further region or regions have been
added between the previously concurrent lines.

Considering essentially different configurations of points and line seg-
ments between them, we find one configuration of three points, two of four
points, three of five points and sixteen of six points, as shown in Figure 4
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(cases of fewer than six points), Figure 5 (cases of six points with more than
three points on the convex hull) and Figure 6 (cases of six points with three
points on the convex hull). Considering how the points of a configuration are
paired (and allowing for the symmetry of some configurations), the configu-
rations in Figure 5 and Figure 6 lead to respectively 7, 3, 9, 15, 11, 15, 15, 9,
11, 15, 5, 7, 9, 9, 15 and 15 cases, a total of 170 cases which may individually
be checked if required to have each region in an even number of the eight
triangles.

While the list of configurations is just presented as an assertion, such

assertions of completeness and correctness should not necessarily be held as

very reliable without a better-defined systematic means of enumeration of

configurations, and so an enumeration differing from that listed here should

not automatically be presumed to be incorrect.

It would be possible to avoid the above analysis of cases by considering

the configuration of ABCD, then looking separately at E and F in relation

to this configuration. However, each of E and F would then be in the posi-

tion of X in solution 5 above, and so such a solution would be essentially a

version of solution 5 but with a more complicated induction than necessary.

To distinguish this solution from solution 5, we proceed to the full analysis of

cases.
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Figure 4: Cases for solution 6: three, four or five points
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Figure 5: Cases for solution 6: six points, convex hull not a triangle
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Figure 6: Cases for solution 6: six points, convex hull a triangle
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Solution 7: Graph theory

Consider the triangles containing P (with vertices in S) as vertices of a graph.
Two triangles are joined by an edge in this graph if and only if they share two
vertices in S. Given a triangle containing P , and a fourth point of S, P must
be in exactly one triangle with vertices the new point and two vertices of the
original triangle, by the properties of sets of four points discussed above
under solution 2. Thus every vertex of this graph has degree n− 3, which is
odd, so the graph has an even number of vertices; that is, an even number
of triangles contain P .
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Solution 8: Rotating a line with binomial co-

efficients

Draw a straight line through P , not passing through any point of S. Rotate
this line clockwise around P ; as it rotates is passes points of S, until after
having rotated by 180◦ it has passed every point exactly once (and continuing
it passes each point each in the course of each 180◦ it turns).

(

n

3

)

is even, so the number of triangles containing P is even if and only
if the number not containing P is even. We will count the number not
containing P . Points X, Y , Z forming a triangle not containing P all lie on
one side of the line at some point in its rotation; then one half line passes
the points successively on some other, say X then Y then Z, after which
again they all lie on one side (now the other side). In the course of rotation
by 180◦, X will be passed exactly once, so we arrange to count each triangle
not containing P at the point where the line moves from having all points on
one side to having one on one side and two on the other (passing X, in this
case). Say that just before passing X there are k points on the same side

as X and n− k on the other; then there are
(

k−1
2

)

triangles not containing P
for which X is the first vertex in the ordering we determined. Thus, if we
sum over all points X the value

(

k−1
2

)

where k is the number of points on
the same side as X just before the line passes X, the result is the number of
triangles not containing P , which we wish to show is even.

Say we have r points on one side of the line and n− r on the other side of
the line. We keep track of the changing value of r. If this goes down, we have
passed a point on that side, and add

(

r−1
2

)

to the total number of triangles;

if it goes up, we have passed a point on the other side, and add
(

n−r−1
2

)

to
the total number of triangles. After rotating through 180◦ the value r has
become n − r.

Note that
(

s

2

)

mod 2 depends only on s mod 4, and we see that
(

n−r−1
2

)

≡
(

r+n−2
2

)

, i.e.,
(

r−2
2

)

if n ≡ 0 (mod 4) and
(

r

2

)

if n ≡ 2 (mod 4). If the

number of points on one side goes down then up we have added
(

r−1
2

)

+
(

n−(r−1)−1
2

)

to the number of triangles; this is odd for n ≡ 0 (mod 4) and

even for n ≡ 2 (mod 4). If the number of points on one side goes up then

down we have added
(

n−r−1
2

)

+
(

r

2

)

, again odd for n ≡ 0 (mod 4) and even

for n ≡ 2 (mod 4).
By repeatedly cancelling pairs of successive rises and falls of r, we reduce

to a straight path between r and n−r, of length |n−2r|, so having cancelled
r such pairs (each yielding an odd number of triangles for n ≡ 0 (mod 4),
an even number for n ≡ 2 (mod 4)). At this point we could without loss
of generality suppose the line started in a position such that r = n/2 (as
it must pass through such a position between any other r and n − r), so
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n/2 such pairs were cancelled, yielding an even number of triangles in any
case. Alternatively, we may compute the necessary sum depending on the
value of r (mod 4) and on whether r is less than or greater than n/2.
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Solution 9: Algebraic enumeration

Take an arbitrary line ℓ through P , not passing through any point of S.
Any triangle containing P has as vertices one point on one side of ℓ and two
points on the other side. Suppose it contains A on one side and two points
on the other side; the necessary and sufficient condition for two points B, C
on the other side to be such that ABC contains P is that B and C lie on
opposite side of the line AP . Suppose it contains A1 and A2 on one side and
one point on the other side; the necessary and sufficient condition for B on
the other side to be such that A1A2B contains P is that B lies in the sector
of the other side bounded by the lines A1P and A2P .

Thus list the points on one side of the line, in angular order round P , as
A1, A2, . . . , Ak; let the lines AiP divide the other side of ℓ into sectors S0, S1,
. . . , Sk (where AiP lies between Si−1 and Si), and let Si contain ai points of S.
The number of triangles containing P whose vertices are Ai and two points
on the other side of ℓ is (a0 + · · ·+ai−1)(ai + · · ·+ak), so the total number of
triangles containing P with just one Ai as a vertex is s1 =

∑

i<j(j−i)aiaj. The
number of triangles containing P with vertices Ai and Aj (supposing i < j)
is (ai + · · ·+aj−1), so the total number of triangles containing P with two Ai

as vertices is s2 =
∑

i i(k − i)ai. We wish to show that s1 + s2 is even.
Now let e =

∑

i even ai and o =
∑

i odd ai. Note that e + o + k = n, which
is even. Working mod 2, we have s1 =

∑

i<j, j−i odd aiaj = eo. If k is odd
then one of e and o is even so eo is even, and one of i and (k − i) is even for
all i, so s2 is even and we are done. If k is even then, again mod 2, s2 = o;
e and o are both even or both odd and so eo + o is even and again we are
done.
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Solution 10: Two-point induction by a result

from the 1983 Kürschák Competition

We work by induction on n. The result is clearly true for n = 0 and n = 2,
so suppose that the result holds for all even n < k for some even k ≥ 4 and
consider the case n = k.

From the 1983 Kürschák Competition, problem 3, we know that there are
points A and B in S such that P lies in no triangle ABC with C ∈ S. By the
induction hypothesis, the number of triangles containing P whose vertices
are from S \ {A,B} is even, so it remains to show only that the number of
triangles containing P which have at least one of A and B as a vertex (and
so exactly one of them as a vertex) is also even. But if P lies in AXY then it
must also lie in BXY by the results for 4-sets (since it does not lie in ABX
or ABY ), so it lies in an even number of triangles with A or B as a vertex.
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Solution 11: General two-point induction

We work by induction on n. The result is clearly true for n = 0 and n = 2,
so suppose that the result holds for all even n < k for some even k ≥ 4 and
consider the case n = k.

Take any points A and B in S. By the induction hypothesis, the number
of triangles containing P whose vertices are from S \ {A,B} is even, so it
remains to show only that the number of triangles containing P which have
at least one of A and B as a vertex is also even. Suppose that there are
p triangles ABX containing P (so that n − 2 − p vertices Y have ABY not
containing P ). Then, using the results on 4-sets and denoting vertices as X
if ABX contains P and as Y otherwise, triangles of the forms AX1X2 and
BX1X2 do not contain P ; for any X and Y exactly one of AXY and BXY
contains P ; and for any Y1 and Y2 an even number of AY1Y2 and BY1Y2

contain P . So the number of triangles containing P is, mod 2, equal to
p + p(n − 2 − p), which is even.

Solutions 4 and 10 can be considered special cases of this solution, but

they were found first before this version was identified.
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Solution 12: Algebraic enumeration, simple

version

As in solution 9, take an arbitrary line ℓ through P , not passing through any
point of S. This time, however, if there are an even number of points on
each side of ℓ then rotate it until it passes one point so that there are now
an odd number on each side of ℓ. For any A on one side of ℓ, AP divides
the other side of ℓ so that there are an even number of points of S on one
side of AP and an odd number on the other side; so the number of triangles
containing P with vertices A and two points on the other side is even. This
applies for any A on either side of ℓ, so the result follows.

The algebra in solution 9 was attempted by a contestant, but without a

convincing argument that the final result was even. However, contestants

using this sort of approach all seemed to treat ℓ as ‘horizontal’ instead of

arbitrary, and so missed the simplification to this solution.
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