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We answer a question of Sós by showing that, if a graph G of order n and density p

has no complete minor larger than would be found in a random graph G(n, p), then G is

quasi-random, provided either p > 0.45631 . . . or κ(G) > n(log log log n)/(log log n), where

0.45631 . . . is an explicit constant.

The results proved can also be used to fill the gaps in an argument of Thomason,

describing the extremal graphs having no Kt minor for given t.

1. Introduction

As usual, define a graph H to be a minor of a graph G (writing H ≺ G) if H can be

obtained from G by a series of vertex and edge deletions and edge contractions; or,

equivalently, if there are disjoint subsets Wu ⊆ V (G), for u ∈ V (H), such that all G[Wu]

are connected and, for all uv ∈ E(H), there is an edge in G between Wu and Wv .

Fernandez de la Vega [4] noticed from Bollobás, Catlin and Erdős [1] (see below)

that random graphs are good examples of graphs with high average degree but no large

complete minor. Kostochka [5, 6] showed that they are within a constant factor of being

optimal. More recently, Thomason [12] essentially determined the extremal function for

complete minors Kt in terms of the average degree, as t→∞: if we define

c(t) = min{c : e(G) > c|G| implies Kt ≺ G},
then c(t) exists, and he showed that c(t) = (α + o(1))t

√
log t, where α = 0.3190863 . . . is

an explicit constant; or, equivalently, that the minimum average degree guaranteeing a

Kt minor is (2α+ o(1))t
√

log t.
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Bollobás, Catlin and Erdős [1] showed that the largest Kt minor in a random graph

G(n, p) has

t = (1 + o(1))
n√

log1/q n
,

where q = 1 − p. Choosing q = λ = 0.2846681 . . . , another explicit constant, and n =

t
√

log1/λ t, gives examples of graphs with average degree (2α + o(1))t
√

log t and no

Kt minor. Examples with the same average degree and larger order are then constructed

by taking many disjoint copies of G(n, 1− λ).
Thomason’s proof in [12] therefore consists of showing that a graph (not necessarily

random) of average degree greater than (2α+ o(1))t
√

log t must have a Kt minor. Having

proved this, he then claimed at the end of the paper, with an outline proof, that any

extremal graph (that is, a graph with average degree (2α+ o(1))t
√

log t and no Kt minor)

is essentially the example given above: that (save for a few edges) it consists of a disjoint

union of quasi-random graphs of the order and density given above. Here ‘quasi-random’

is used in the sense of Chung, Graham and Wilson [3] or Thomason [10]: that is, that

every induced subgraph of order |G|/2 (or more generally α|G| for any constant α) has

essentially the same density.

Sós asked a more general question about complete minors and quasi-randomness. It

is sometimes the case that quasi-random graphs contain larger minors than the corre-

sponding random graphs; examples are given by Thomason [11], and indeed the problem,

raised by Mader, of explicitly presenting graphs without large complete minors remains

open. Sós asked whether, however, the converse might be true: that if a graph of order n

and density p had no complete minor larger than that in a random graph G(n, p), would

the graph then necessarily be quasi-random?

At first sight, the outline argument in Section 7 of [12] would appear to be usable

to address Sós’s question. The relevant part of the argument is, essentially, that if G is

of maximal density having no Kt minor, then no subgraph of order (1 − ε)|G| can have

density much greater than that of G, or it would have a larger minor than that found

in the whole of G. Thus G is quasi-random. This argument is, however, flawed on two

counts: first, if the argument is quantified properly, using the method and results of [10],

it turns out that the minor in the subgraph is not as large as is required; and second, the

argument does not rule out the possibility of graphs G with very sparse subgraphs, and

there are non-quasi-random graphs (such as some bipartite graphs) that have no large

subgraph with significantly larger density than the original graph, but do have a few large

subgraphs with significantly smaller density.

In this paper, our purpose is to answer Sós’s question; and at the same time, our results

provide enough information to fill in the gaps in Thomason’s argument.

The answer to Sós’s question turns out to depend on the density and connectivity of G.

A graph G of order n and density p that is not quasi-random will have a complete minor

larger than that of a random graph G(n, p) if p is large (including p > 1
2
), and the same

result holds for smaller p provided that G has moderate connectivity. Otherwise, if both

the density and the connectivity are small, the assertion may fail; for example, the disjoint
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union of two G(n/2, 1
2
) random graphs has order n and density 1

4
but does not have a

complete minor as large as that of G(n, 1
4
).

Throughout this paper, we shall generally follow the notation of Bollobás [2]; the

following additional notation will also be useful. Given a graph G whose vertex set is

partitioned into two disjoint subsets X, Y , we define the three densities

pX =
e(X)(|X|

2

) , pXY =
e(X,Y )

|X||Y | , pY =
e(Y )(|Y |

2

) ,
where e(X), e(Y ) and e(X,Y ) are, respectively, the number of edges of G spanned by X,

spanned by Y and joining X to Y . We likewise put qX = 1 − pX , qXY = 1 − pXY and

qY = 1− pY . It is the principal feature of quasi-random graphs that, for every X of given

order, the value of pX differs little from p, the density of G itself, which of course implies

that all of pX , pXY and pY are close to p.

A precise statement of the answer to Sós’s question can now be given. This involves a

constant p0 = 1
3

(
4 +

3
√

3
√

33− 17− 3
√

3
√

33 + 17
)

= 0.45631 . . . , which is the real root of

x3 − 4x2 + 6x− 2 = 0; and q0 = 1− p0 is the real root of x3 + x2 + x− 1 = 0. (This arises

from the inequality q4 − 2q + 1 = (q − 1)(q3 + q2 + q − 1) > 0; as long as this inequality

holds, a random graph on half the vertices with twice the density will have a larger minor

than a random graph on all the vertices, but when q > q0 such a random graph on half

the vertices will have a smaller minor, and the extremal graphs become the graphs made

up of multiple disjoint random graphs with a few extra edges, described above, rather

than being themselves random graphs.)

Theorem 1.1. Given ε > 0, there exist δ > 0 and N with the following property.

Let G be a graph of order n > N and edge density p, where ε < p < 1− ε. Suppose that

G has a vertex partition (X,Y ) with |X| = |Y | such that at least one of |pX − p|, |pXY − p|
and |pY − p| exceeds ε. Suppose that either

p > p0 + ε (1.1)

or

κ(G) > n(log log log n)/(log log n). (1.2)

Then G contains a Kt minor for

t > (1 + δ)
n√

log1/q n
,

where, as usual, q = 1− p.

Roughly, this states that a non-quasi-random graph has a minor larger than a corre-

sponding random graph provided that one of the conditions (1.1) or (1.2) holds.

In fact, provided we consider only graphs of reasonably connectivity (1.2), we can make

a much more precise statement about the minimum order of a complete minor.

Let G be a graph of order n with a vertex partition (X,Y ), where |X| = α|G|. Let qX ,

qXY , qY be as above. Let p = 1 − q be the density of G. Then, if n is large, we have
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essentially

q = α2qX + (1− α)2qY + 2α(1− α)qXY .
Consider now a constrained random graph G′ of order n with a fixed vertex partition

(X,Y ), where the edges are chosen independently and at random, with probabilities pX
inside X, pXY between X and Y and pY inside Y . It is straightforward to adapt the

arguments of Bollobás, Catlin and Erdős [1] to show that the maximum order of a

complete minor in this constrained random graph is

(1 + o(1))
n√

log1/q∗ n
,

where

q∗ = qX
α2

qY
(1−α)2

qXY
2α(1−α).

Taking logarithms and applying Jensen’s inequality, we see that

q > q∗,

with equality if and only if qX = qY = qXY .

The following theorem shows that our graph G with its given partition will have a

complete minor at least as large as found in the corresponding constrained random

graph G′, provided that G has reasonable connectivity.

Theorem 1.2. Let 0 < ε < 1. Then there exists N with the following property.

Let G be a graph of order n > N, with vertex partition (X,Y ) as above, |X| = αn, where

ε < α < 1−ε. Let qX , qY , qXY and q∗ be defined as above, and suppose ε < qX, qY , qXY 6 1

and q∗ < 1− ε. Suppose κ(G) > n(log log log n)/(log log n). Then G � Ks, where

s =

⌈
(1− ε) n√

log1/q∗ n

⌉
.

This theorem is an extension of Theorem 4.1 of Thomason [12], which gives

s > (1− ε) n√
log1/q n

,

when G has density p and reasonable connectivity; that theorem follows from Theorem 1.2

because q > q∗. The same inequality also means that Theorem 1.2 implies Theorem 1.1

for graphs of reasonable connectivity, except for extreme values of the parameters.

2. Outline of proof

We prove Theorem 1.2 first; then from it we derive Theorem 1.1. To prove Theorem 1.2,

we must partition V (G) into s parts W1, . . . ,Ws, such that each G[Wi] is connected and

there is an edge in G between each Wi and Wj . The critical aspect is finding a partition

that ensures that there are edges between each pair of parts of the minor; if such edges

exist, the parts can be made connected, provided that G itself is reasonably connected.
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For the case considered in Thomason [12], where all that is known about G is its

density p (and that G is reasonably connected, where appropriate), that paper gives an

argument for constructing a partition with the desired properties. The principal feature is

to order the vertices of G by degree and to use this ordering to take a suitably constrained

random partition.

At first sight it would appear that, to extend this argument to the present case, where

the existing partition (X,Y ) and the densities pX , pY and pXY must be taken into account,

would require a two-dimensional partial ordering of vertices by degrees to both X and Y ;

but such an argument is not strong enough to yield the required results. Nevertheless,

somewhat surprisingly, it turns out that the argument can be adapted to the present case

after all; although ordering the vertices by degree is not appropriate, there is a suitable

function on the vertices which provides a single linear order that will work. Having found

this ordering, the argument then follows somewhat similar lines to those of Thomason’s

proof of Theorem 4.1 in [12].

Having proved Theorem 1.2, Theorem 1.1 is derived as follows: either G is reasonably

connected, in which case the result is immediate, or G has a very small cutset (and we

require q < q0 to go any further). If this cutset splits the graph into reasonably sized

parts (each with at least 1
50

of the vertices), we show that (for q < q0) one of these parts

is sufficiently much denser than the original graph that it would be expected to have a

larger minor than a random graph of the same order and density as the original graph. If

small cutsets only cut small numbers of vertices off the graph, we remove vertices of small

degree; either only a few of them exist, so after removing them the resulting graph cannot

have small parts cut off by small cutsets, or many exist, and after removing enough of

them the resulting graph has a larger density. We iterate this process a bounded number

of times, if necessary, ending up at a graph of large connectivity and with a large complete

minor, and so deduce Theorem 1.1 using Theorem 1.2.

3. Proof of Theorem 1.2

We define a complete equipartition of G to be a partition of V (G) into disjoint parts

W1, . . . ,Wk , such that G contains an edge from Wi to Wj for all 1 6 i < j 6 k and such

that b|G|/kc 6 |Wi| 6 d|G|/ke for all i. The following lemma lies at the heart of the paper.

Lemma 3.1. Let G be a graph of order n with α, X, Y , q, qX , qY , qXY , q∗ as above. Let

`, s > 2 be integers with n = s` and `α an integer, α` > 2, (1− α)` > 2. Then G contains a

complete equipartition into at least

s− 4s

ωη
− 2s2(18ω)`

[
q∗

1− η
](1−η)`(`−max(1/α,1/(1−α)))

parts, for every 0 < η 6 1− qXαqXY (1−α), 1− qY (1−α)qXY α and ω > 1.

Proof. For a vertex v ∈ V (G) we define Q(v;X) = { x ∈ X − {v} : vx 6∈ E(G) }, the set

of non-neighbours of v (other than v itself) within X, and Q(v;Y ) = { y ∈ Y − {v} :

vy 6∈ E(G) }, the set of non-neighbours of v (other than v itself) in Y Also put Q(v) =
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Q(v;X) ∪ Q(v;Y ). For W ⊂ V (G), put N(W ) = { u ∈ V (G) : W ⊂ Q(u) }. Let

q(v;X) = |Q(v;X)|/(αn− 1),

q(v;Y ) = |Q(v;Y )|/((1− α)n− 1).

Put

r(v) = q(v;X)α`q(v;Y )(1−α)`.

Then order the vertices of X as x1, . . . , xαn in order of increasing r(xi), and similarly order

the vertices of Y as y1, . . . , y(1−α)n in order of increasing r(yi).

Now define blocks BXj = { xi : (j − 1)s < i 6 js } for 1 6 j 6 α`, and BYj = { yi :

(j − 1)s < i 6 js } for 1 6 j 6 (1 − α)`. Independently and uniformly choose random

permutations βXj , βYj of the blocks, and so induce a random partition of V (G) into s parts

Wt = { xβXj (t) : 1 6 j 6 α` } ∪ { yβYj (t) : 1 6 j 6 (1− α)` }, 1 6 t 6 s.
Let SX ⊂ X, SY ⊂ Y , S = SX ∪ SY . Then, for W one of the random parts,

Pr(W ⊂ S) =

α∏̀
j=1

|SX ∩ BXj |
s

(1−α)`∏
j=1

|SY ∩ BYj |
s

6

 1

α`

α∑̀
j=1

|SX ∩ BXj |
s

α` 1

(1− α)`
(1−α)`∑
j=1

|SY ∩ BYj |
s

(1−α)`

=

( |SX |
αn

)α`( |SY |
(1− α)n

)(1−α)`
,

using the AM/GM inequality.

For S = Q(xi), we have Pr(xi ∈ N(W )) = Pr(W ⊂ S) 6 q(xi;X)α`q(xi;Y )(1−α)` = r(xi).

Similarly, Pr(yi ∈ N(W )) 6 r(yi). By the ordering of vertices chosen,

E(|BXj ∩N(W )|) 6 sr(xjs),

and

E(|BYj ∩N(W )|) 6 sr(yjs).

Say that W rejects a block BXj (respectively BYj ) if |BXj ∩N(W )| > ωsr(xjs) (respectively

|BYj ∩ N(W )| > ωsr(yjs)), so that W rejects a given block with probability at most 1/ω;

put RX(W ) = { j < α` : W rejects BXj } and RY (W ) = { j < (1− α)` : W rejects BYj }, so

E(|RX(W )|) 6 (α`−1)/ω and E(|RY (W )|) 6 ((1−α)`−1)/ω. Call a random part W accept-

able if |RX(W )| < η(α`− 1) and |RY (W )| < η((1− α)`− 1), so Pr(W is not acceptable) <

2/ωη.

Now let W be some acceptable part; put MX(W ) = {1, . . . , α`−1}−RX(W ), MY (W ) =

{1, . . . , (1 − α)` − 1} − RY (W ), mX = |MX(W )| > (1 − η)(α` − 1) and mY = |MY (W )| >
(1 − η)((1 − α)` − 1). Let W ′ be another random part and let PW be the probability,
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conditional on W , of there being no edge from W ′ to W . Then we have

PW = Pr(W ′ ⊂ N(W ) | W )

6
∏

j∈MX (W )

ωsr(xjs)

s− 1

∏
j∈MY (W )

ωsr(yjs)

s− 1

< (2ω)`
∏

j∈MX (W )

r(xjs)
∏

j∈MY (W )

r(yjs).

Now, we have ∏
j∈MX (W )

r(xjs)
1/`

1/mX

6 1

mX

∑
j∈MX (W )

r(xjs)
1/`

=
1

mX

∑
j∈MX (W )

q(xjs;X)αq(xjs;Y )(1−α)

6 1

mXs

αn∑
i=1

q(xi;X)αq(xi;Y )(1−α)

6 1

mXs

[
αn∑
i=1

q(xi;X)

]α [ αn∑
i=1

q(xi;Y )

](1−α)

=
αnqX

αqXY
(1−α)

mXs

6 qX
αqXY

(1−α)

1− η .
α`

α`− 1

(using Hölder’s inequality) and likewise ∏
j∈MY (W )

r(yjs)
1/`

1/mY

6 qY
(1−α)qXY α

1− η .
(1− α)`

(1− α)`− 1
,

whence

PW 6 (2ω)`
[
qX

αqXY
(1−α)

1− η .
α`

α`− 1

]`mX[
qY

(1−α)qXY α

1− η .
(1− α)`

(1− α)`− 1

]`mY
6 (18ω)`

[
q∗

1− η
](1−η)`(`−max(1/α,1/(1−α)))

= P , say.

Now, we have a partition with at most 4s/ωη unacceptable parts and at most 2s2P

defective pairs of acceptable parts with no edge between them. Remove each unacceptable

part, and one part from each defective pair. This yields an equipartition of part of the graph

into the required number of parts, and the remaining vertices may then be distributed

among those parts.

We now convert this lemma into a more usable form.
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Lemma 3.2. Let 0 < ε < 1. Then there exists N with the following property.

Let G be a graph of order n > N, with vertex partition (X,Y ), |X| = βn, where ε < β <

1− ε. Let ε < qX, qY , qXY and q∗ < 1− ε. Then G has a complete equipartition into at least

(1− ε)n/√log1/q∗ n parts.

Proof. Suppose n large (sufficiently large for all the parts of this proof to work). Put

d = b√nc. We apply Lemma 3.1 with α = bdβc/d, ` = d
⌈
(1/d)(1 + ε/2)

√
log1/q∗ n

⌉
,

s = bn/`c, η = ε(1− q∗)/8 and ω = 128/ε2(1− q∗). We lose a few vertices from G in the

conversion to integer s and `, but only O
(√

log1/q∗ n
)
< ε3n of them, so the effect on the

n and q∗ used in Lemma 3.1 is insignificant.

We have s > (1 − ε/2)n/
√

log1/q∗ n, so it will suffice to show that each of the terms

subtracted from s in the statement of Lemma 3.1 is at most εs/4; this holds for the first term

by choice of η and ω. For the second, we have `(`−max(1/α, 1/(1−α))) > (1+ε) log1/q∗ n,

and since η < ε/8 we have (1 − η)`(` −max(1/α, 1/(1 − α))) > (1 + 3ε/4) log1/q∗ n. Also,

log(1/(1 − η)) = − log(1 − η) < 2η = ε(1 − q∗)/4 since η < 1/8; and 1 − q∗ < log(1/q∗),
so log(1/(1− η)) < (ε/4) log(1/q∗); thus log(q∗/(1− η)) < (ε/4− 1) log(1/q∗). Thus,

2s2(18ω)`
[
q∗

1− η
](1−η)`(`−max(1/α,1/(1−α)))

6 s exp
[

log n+ ` log(2304/ε2(1− q∗))− (1 + 3ε/4)(1− ε/4) log n
]

6 s exp
[
2
√

log1/q∗ n log(2304/ε2(1− q∗))− (ε/4) log n
]

6 s exp
[
2
√

(log n)/(1− q∗) log(2304/ε2(1− q∗))− (ε/4) log n
]

< εs/4

for large n, given the bounds on q∗.

We now use this result to find complete minors in dense graphs. We use a number of

simple lemmas from Thomason [12]. The following are his Proposition 4.1, Lemma 4.1

and Lemma 4.2 respectively, and proofs may be found in [12].

Lemma 3.3. Let X ∼ Bi(n, p) be a binomially distributed random variable. Let 0 < ε < 1.

Then Pr(|X − np| > εnp) < 2e−ε2np/4.

Lemma 3.4. Given a bipartite graph with vertex classes A and B, wherein each vertex of A

has at least γ|B| neighbours in B (γ > 0), then there exists a set M ⊂ B such that every

vertex in A has a neighbour in M, and |M| 6 blog1/(1−γ) |A|c+ 1.

Lemma 3.5. Let G be a connected graph and let u, v ∈ V (G). Then u and v are joined

in G by at least κ2(G)/4|G| internally disjoint paths of length at most 2|G|/κ(G).

Proof of Theorem 1.2. Assume throughout that n is large. By Lemma 3.5, for any u,

v ∈ V (G), u and v are joined in G by at least κ2/4n internally disjoint paths with length
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at most

h = 2(log log n)/(log log log n);

let Pu,v be the set of such paths.

Let r = 1/(log log log n) and select vertices independently and at random with prob-

ability r from V (G), forming a set of vertices C , where |C| < 2rn with probability at

least 1/2. Using Lemma 3.3, the probability that a given vertex v ∈ G of degree deg(v)

has more than ε deg(v)/6 neighbours within C is less than 1/n2. For given u, v ∈ V (G),

C contains all the internal vertices of some given path in Pu,v with probability at least rh,

independently for each such path; and rh > (log n)−1/6, so rh|Pu,v|/2 > n/(log n)1/3. Again

using Lemma 3.3, we conclude that the probability that fewer than rh|Pu,v|/2 paths of Pu,v
lie entirely within C is less than 1/n3; so there is some set C (which we now fix) with

|C| < 2rn, with every vertex v of G having at most ε deg(v)/6 neighbours inside C , and

every pair u, v of vertices of G having at least n/(log n)1/3 internally disjoint paths from u

to v, with length at most h, whose internal vertices lie within C .

Similarly, choose a random subset D of V (G)−C , choosing each vertex with probability r.

With probability at least 1/2 we have |D| < 2rn; any given vertex v has at least deg(v)/2 >
κ/2 neighbours outside C and the probability that more than ε deg(v)/6 of these or fewer

than rκ/4 of these lie in D is at most 1/n2; so we may fix D such that every vertex v has

between rκ/4 and ε deg(v)/6 neighbours in D.

Now consider the graph G−C−D, and apply Lemma 3.2 to it with parameter ε/8. Each

of qX , qY , qXY has changed by at most ε2/10, so we may find a complete equipartition

of G − C − D into s parts, say W ′
1, . . . , W ′

s . By s applications of Lemma 3.4 we find

disjoint subsets M1, . . . ,Ms in D such that every vertex of W ′
i has a neighbour in Mi and

|Mi| 6 5(log log n)2 for all i. We have s < n(log log n)/
√

log n, so after M1, . . . ,Mj have

been chosen every vertex of G−C−D has at least rκ/4−5s(log log n)2 > rκ/8 neighbours

in D; so that the conditions of that lemma apply with A = W ′
j+1, B = D−M1 − · · · −Mj

and γ = rκ/8|D| > 1/(8 log log n); and, since A was a part in an equipartition of G−C−D
into s parts, (1 − ε)|A| 6 √(log n)/ log(1/q∗) 6

√
(log n)/(1− q∗); so we have Mj+1 with

|Mj+1| 6 1 + log1/(1−γ) |A| 6 1 + (log |A|)/γ < 5(log log n)2.

It now remains to find disjoint N1, . . . , Ns in C such that Mi ∪ Ni is connected (then,

Wi = W ′
i ∪Mi ∪ Ni will give our complete minor). We can find such Ni with |Ni| 6

5h(log log n)2, since, given N1, . . . , Nj , we have |N1 ∪ · · ·Nj | < 5sh(log log n)2 and we have

n/(log n)1/3 paths of length at most h with internal vertices in C between any pair of

vertices u, v of Mj+1, so we find |Mj+1| − 1 such paths to connect Mj+1.

4. Proof of Theorem 1.1

From now on, we aim only for minors of order (1+δ)n/
√

log1/q n, not for stronger results

involving q∗. Theorem 1.2 now yields Theorem 1.1 in the well-connected case.

Lemma 4.1. Let ε > 0 be given. Then there exist δ > 0 and N with the following property.

Let G be a graph of order n > N and edge density p, where ε < p < 1− ε. Suppose that
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G has a vertex partition (X,Y ) with |X| = |Y |, such that at least one of |pX − p|, |pXY − p|
and |pY − p| exceeds ε. Suppose that κ(G) > n(log log log n)/(log log n). Then G contains a

Kt minor for t > (1 + δ)n/
√

log1/q n (where, as usual, q = 1− p).

Proof. Since log q = log(α2qX +2α(1−α)qXY +(1−α)2qY ) and log q∗ = α2 log qX +2α(1−
α) log qXY + (1 − α)2 log qY , we can, by considering the graph of log x, choose small ε1

(much smaller than ε) and δ > 0 such that, if q > ε/2 and if any of |qX − q|, |qY − q|,
|qXY − q| exceeds ε/4, then (1− ε1)(log(1/q∗∗))1/2 > (1 + δ)(log(1/q))1/2 holds, where we

define q∗∗ = max(ε1, qX)α
2

max(ε1, qY )(1−α)2

max(ε1, qXY )2α(1−α).
If, now, ε1 < qX , qY , qXY , this lemma follows by applying Theorem 1.2 to G with ε1 in

place of ε. If we have one of qX , qY , qXY 6 ε1 (but nevertheless q > ε), then this means

that almost all edges are present in some part of the graph, and q∗ is much smaller than q.

Remove a few edges from the relevant part or parts of the graph to increase qX , qY , qXY
to above ε1; by a result of Mader [7] that a minimal k-connected graph on n vertices

(n > 3k) has at most k(n− k) edges, we may easily do this while preserving the required

connectivity. Since ε1 is small compared to q, after removing these edges, we still have (in

the modified graph) one of |qX − q|, |qY − q|, |qXY − q| exceeding ε/4, so Theorem 1.2

applied to the new graph gives our result.

It now remains only to consider the case of small connectivity. Define the expected

order of a complete minor in a random graph of order n and density of non-edges q

to be t(n, q) = n/
√

log1/q n. In many cases, we will reduce from a graph G of order n

and density at least p = 1 − q to a subgraph H of order βn, and want the expected

order of a complete minor in H to be as large as that expected in a random graph

of order n and edge density at least p; that is, if H is of density p′ = 1 − q′, we will

want βn/
√

log1/q′(βn) > n/
√

log1/q n; it will suffice if β
√

log(1/q′) >
√

log(1/q), that is,

if q′ 6 q1/β2

. Define q′(q, β) = q1/β2

. Similarly, we may want H to have a minor at least

(1 + δ) times larger, so we also define q′(q, β, δ) = q(1+δ)2/β2

.

Lemma 4.2. Let fq(α) = 1 − α2 − (1 − α)2 + α2q1/α2

+ (1 − α)2q1/(1−α)2 − q. If 0 < α < 1

and 0 6 q < q0 = 1− p0, then fq(α) > 0. Further, for 0 6 q < q0, we have fq(
1

100
) > 10−3.

Proof. The behaviour of the function fq(α) is illustrated by Figure 1, in which graphs of

f0.4, f0.5 and f0.55 are shown. A quick glance at this figure makes the lemma appear very

plausible. Unfortunately, I do not have a short and elegant proof of the lemma. A full

proof exists, but it involves many cases and numerical computation, so is not included

here. It may be found in [8] and [9].

We now apply this lemma.

Corollary 4.3. Let ε > 0 be given. Then there exist δ > 0 and N with the following

property.

Let G be a graph of order n > N and edge density at least p, where p0 + ε < p. Suppose

κ(G) < n(log log log n)/(log log n), and that there exists a cutset S in G with |S | = κ(G)
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such that there exist X, Y with V (G) = X∪Y , S = X∩Y and E(G) = E(G[X])∪E(G[Y ]),

and 1
100

(n+ |S |) 6 |X| 6 99
100

(n+ |S |). Then G has a subgraph H of order at least 1
100
n and

at most 99
100

(n+ |S |) and density p′ = 1− q′ where q′ 6 q′(q, |H |/n, δ).

Proof. Suppose we have such a cutset, and let |S | = γn. Choose our X, Y . Our subgraph H

will be one of G[X] and G[Y ]. Put |X| = α(1 + γ)n and |Y | = (1 − α)(1 + γ)n, where
1

100
6 α 6 99

100
.

Accordingly, define pX , pY as the densities of edges in X, Y ; so that p 6 α2(1 +

γ)2pX + (1 − α)2(1 + γ)2pY and q > 1 − α2(1 + γ)2(1 − qX) − (1 − α)2(1 + γ)2(1 − qY ) =

(1− α2(1 + γ)2 − (1− α)2(1 + γ)2) + α2(1 + γ)2qX + (1− α)2(1 + γ)2qY = s, say.

We want to show that either qX 6 q′(q, α(1 + γ), δ) or qY 6 q′(q, (1 − α)(1 + γ), δ).

Since we have q > s, it will suffice to show that either qX 6 q′(s, α(1 + γ), δ) or qY 6
q′(s, (1 − α)(1 + γ), δ). Suppose not; we shall derive a contradiction. For, we then have

qX > q′(s, α(1 + γ), δ) and qY > q′(s, (1− α)(1 + γ), δ), so

s > (1− α2(1 + γ)2 − (1− α)2(1 + γ)2)

+ α2(1 + γ)2q′(s, α(1 + γ), δ) + (1− α)2(1 + γ)2q′(s, (1− α)(1 + γ), δ),



582 J. S. Myers

that is,

f(s, α, γ, δ) = (1− α2(1 + γ)2 − (1− α)2(1 + γ)2)

+ α2(1 + γ)2s(1+δ)2/α2(1+γ)2

+ (1− α)2(1 + γ)2s(1+δ)2/(1−α)2(1+γ)2

− s 6 0.

This function is continuous in all four variables, and f(s, α, 0, 0) is fs(α) in the notation of

Lemma 4.2.

By Lemma 4.2, fs(α) is bounded away from zero on 1
100
6 α 6 99

100
, 0 6 q 6 q0 − ε. By

continuity (and so uniform continuity), we deduce that we cannot have f(s, α, γ, δ) 6 0 for

γ, δ sufficiently small (depending on ε), so providing our contradiction.

Corollary 4.4. Let ε > 0 be given. Then there exist δ > 0 and N with the following

property.

Let G be a graph of order n > N and edge density at least p, where p0 + ε < p < 1− ε.
Suppose that G has a vertex partition (X ′, Y ′) with |X ′| = |Y ′|, such that at least one of

|pX ′ −p|, |pX ′Y ′ −p| and |pY ′ −p| exceeds ε. Suppose that δ(G) > 1
60
n. Then either G contains

a Kt minor for t > (1 + δ)n/
√

log1/q n (where, as usual, q = 1− p) or G has a subgraph H

of order at least 1
100
n and at most 199

200
n and density p′ = 1− q′ where q′ 6 q′(q, |H |/n, δ).

Proof. If κ(G) > n(log log log n)/(log log n), we have a large minor by Lemma 4.1.

Otherwise, we have a small cutset S , with |S | = κ(G), and if we choose any division of G

by this cutset, this induces X, Y satisfying the conditions of Corollary 4.3 (since, for any

choice of X, Y , where one of X and Y might be too small, some vertex in X has degree

at most |X|; but the bound on the minimal degrees then implies that |X|, |Y | > 1
60
n). The

result then follows by Corollary 4.3.

Corollary 4.5. Let ε > 0 be given. Then there exists N with the following property.

Let G be a graph of order n > N and edge density at least p, where p0 + ε < p < 1− ε.
Suppose δ(G) > 1

50
n. Then either G contains a Kt minor for t > (1− ε)n/√log1/q n (where,

as usual, q = 1 − p) or G has a subgraph H of order at least 1
100
n and at most 199

200
n and

density p′ = 1− q′ where q′ 6 q′(q, |H |/n).

Proof. If κ(G) > n(log log log n)/(log log n), we have a large minor by Theorem 4.1 of [12].

Otherwise, we have a small cutset S , with |S | = κ(G), and if we choose any division of G

by this cutset, this induces X, Y satisfying the conditions of Corollary 4.3 (since, for any

choice of X, Y , where one of X and Y might be too small, some vertex in X has degree

at most |X|; but the bound on the minimal degrees then implies that |X|, |Y | > 1
50
n). The

result then follows by Corollary 4.3.

We now consider graphs with small minimal degree. For a graph G, let Gζ be the result

of applying the operation ‘remove a vertex of minimal degree’ ζ|G| times to G, where each

time the vertex removed is of degree less than 1
50
n.
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Lemma 4.6. Let ε > 0 be given. Then there exist N and δ > 0 with the following property.

Let G be a graph of order n > N and edge density at least p > p0. Suppose δ(G) < 1
50
n.

Let ζ 6 1
50

, and suppose that Gζ exists. Then Gζ has density p′ = 1−q′ where q′ 6 q′(q, 1−ζ).
Further, if ζ > ε2, then q′ 6 q′(q, 1− ζ, δ).

Proof. We use δ = 10−3ε2, and, for convenience, put δ = 0 when considering ζ < ε2.

We have e(Gζ) > e(G)− 1
50
ζn2, so

p′ >
(

1

2
p− 1

50
ζ

)
/

(
1

2
(1− ζ)2

)
> (1 + 2ζ)

(
p− 1

25
ζ

)
> p+ 0.8ζ

since p > p0. Thus q′ 6 q − 0.8ζ.

We want to show that q′ 6 q(1+δ)2/(1−ζ)2

, so it will suffice to show that (q− 0.8ζ)(1−ζ)2 6
q(1+δ)2

; that is, q × q−2ζ+ζ2 × (1− 0.8ζ/q)(1−ζ)2 6 q × q2δ+δ2

, or, equivalently, cancelling a

factor of q and taking logarithms, that

0 > (log(1/q))(2ζ − ζ2 + 2δ + δ2) + (1− 2ζ + ζ2) log(1− 0.8ζ/q).

We have that log(1/q) 6 e−1/q < 0.38/q, and log(1− 0.8ζ/q) 6 −0.8ζ/q, so it will suffice

to show that

0 > (0.38/q)(2ζ − ζ2 + 2δ + δ2)− (0.8ζ/q)(1− 2ζ + ζ2)

= (1/q)(−0.04ζ + 1.22ζ2 − 0.8ζ3 + 0.38(2δ + δ2))

6 (1/q)(−0.03ζ + 1.22ζ2 − 0.8ζ3)

by our choice of δ. This result holds provided ζ 6 0.025.

We now use the above results to show that general graphs of a given density have

minors as large as random graphs, if the density is sufficient or a connectivity condition

applies.

Lemma 4.7. Let ε > 0 be given. Then there exists N with the following property.

Let G be a graph of order n > N and edge density at least p, where 0.9999 < p < 1− ε.
Then G contains a Kt minor for t > (1− ε)n/√log1/q n (where, as usual, q = 1− p).

Proof. Repeatedly remove the vertex of minimal degree from G, until the minimal degree

is at least 1
50
n; say that we have removed ζn vertices. Then ζ < 1

50
, and Gζ has density

p′ = 1− q′ where q′ 6 q′(q, 1− ζ) by Lemma 4.6. Put n′ = (1− ζ)n = |Gζ |.
If κ(Gζ) > n′(log log log n′)/(log log n′), then Lemma 4.7 follows from Theorem 4.1

of [12]. So suppose that κ(Gζ) < n′(log log log n′)/(log log n′). Then, as in the proof of

Corollary 4.5, we have a small cutset S , with |S | = κ(Gζ), and if we choose any division

of Gζ by this cutset, this induces X, Y satisfying the conditions of Corollary 4.3 (since,

for any choice of X, Y , where one of X and Y might be too small, some vertex in X



584 J. S. Myers

has degree at most |X|; but the bound on the minimal degrees then implies that |X|,
|Y | > 1

50
n′). However, the density condition on G means that we cannot have such X, Y .

The next lemma shows that general graphs of a given density have minors as large as

random graphs, if the density is sufficient or a connectivity condition applies.

Lemma 4.8. Let ε > 0 be given. Then there exists N with the following property.

Let G be a graph of order n > N and edge density at least p, where ε < p < 1 − ε.
Suppose that either κ(G) > n(log log log n)/(log log n) or p > p0 + ε. Then G contains a Kt

minor for t > (1− ε)n/√log1/q n (where, as usual, q = 1− p).

Proof. The well-connected case is just Theorem 4.1 of [12]; when p > 0.9999, the result

will follow by Lemma 4.7. To prove the general result, we apply a bounded number

of operations to our graph, each moving from (H ′, p′) (where initially (H ′, p′) = (G, p))

to (H ′′, p′′) where H ′ is a subgraph of G of density at least p′, H ′′ is a subgraph of G

with density at least p′′, where p′′ = 1− q′(1− p′, |H ′′|/|H ′|), so ensuring that at all stages

|H ′|/
√

log1/q′ |H ′| > n/
√

log1/q n (where q′ = 1−p′). These operations are of the following

forms. After any two of these operations have been consecutively applied, the new graph

H ′′′ satisfies 1
10000
|H ′| 6 |H ′′′| 6 199

200
|H ′|. The upper bound ensures that the number of

steps is bounded, because the density must significantly increase; the lower bound ensures

that p′ stays bounded above by some quantity less than 1, so that Theorem 4.1 of [12]

can indeed be applied.

(1) If p′ > 0.9999, we have our minor by Lemma 4.7.

(2) If the connectivity is high, κ(H ′) > |H ′|(log log log |H ′|)/(log log |H ′|), we have our

minor by Theorem 4.1 of [12].

(3) Otherwise, if some cutset of order κ(H ′) splits the graph into parts each of which has

order at least 1
60
|H ′|, then the conditions of Corollary 4.3 apply and by Corollary 4.3

we have our (H ′′, p′′) with |H ′′| < 199
200
|H ′|.

(4) Otherwise, δ(H ′) < 1
50
|H ′|. Remove successively a vertex of minimal degree until all

vertices have degree at least 1
50
|H ′| or at least 1

50
|H ′| vertices have been removed,

forming the subgraph H ′′ = H ′ζ . In either case, Lemma 4.6 shows that this subgraph is

sufficiently dense. This is the only operation that might not significantly reduce |H ′|;
but if it does not, then δ(H ′′) > 1

50
|H ′′|, so the next operation must be one of the first

three above.

The number of passes through the above loop is bounded, so eventually one of the first

two operations listed applies and we have our minor.

Given this result, we can now prove Theorem 1.1.

Proof of Theorem 1.1. Let ε > 0 be small. If κ(G) > n(log log log n)/(log log n), the result

follows from Lemma 4.1. Otherwise, repeatedly remove a vertex of minimal degree from G,

until either the minimal degree is at least 1
50
n or ε2n vertices have been removed.
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If ε2n vertices have been removed, then by Lemma 4.6 the resulting graph is H ′, with

density at least p′ = 1− q′, where q′ = q′(q, 1− ε2, δ). By Lemma 4.8 applied to H ′, q′ and

δ/2, H ′ � Kt where t > (1− δ/2)|H ′|/
√

log1/q′ |H ′|; by the definition of q′(q, 1− ε2, δ) we

have

t > (1− δ/2)(1 + δ)n/
√

log1/q n > (1 + δ/6)n/
√

log1/q n,

as required.

Otherwise, say ζn vertices were removed, where ζ < ε2. The numbers removed from X

and Y may not be equal, so remove a few more vertices until they are, yielding a

subgraph H ′; so no more than 2ε2n vertices are removed in total. For H ′ of density p′, we

have that at least one of |p′X−p′|, |p′XY−p′|, |p′Y−p′| exceeds ε/2, and p0+ε/2 < p′ < 1−ε/2.

If κ(H ′) > |H ′|(log log log |H ′|)/(log log |H ′|), the result again follows from Lemma 4.1

applied to H ′ and ε/2.

Otherwise, apply Corollary 4.4 to H ′ and ε/2. Either it gives the required minor, or

it reduces to a subgraph H ′′ of density p′′ = 1 − q′′ where q′′ 6 q′(q′, |H ′′|/|H ′|, δ). Now

Lemma 4.8 applied to H ′′, q′′ and δ/2 gives the result, as before.
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